예제 #1
0
  
for k, v in fits.items():
    obs_fastfits[k].make_measurement(threads=4)

# Set in the list the observables you want for the global fit. Usually same as individual fits but if it is not the case you can change the label line 130.
global_fastfit = fastfit_obs('C7-C7p fit global', [Acp, Ad, S, BR])

global_fastfit.make_measurement(threads=4)

# Scale
x_max = 1

# Plotting the fits. You can change the confidence levels with n_sigma=(...)

for i, f in enumerate(fits):
    fpl.likelihood_contour(obs_fastfits[f].log_likelihood,
                                    -x_max, x_max, -x_max, x_max, col=i+1,
                                    interpolation_factor=3, threads=4, steps=30, label=labels[f])

fpl.likelihood_contour(global_fastfit.log_likelihood,
                                -x_max, x_max, -x_max, x_max, n_sigma=(1, 2), col=0,
                                interpolation_factor=10, threads=4, steps=30, label='global')

# You can set the title
plt.title('')
plt.xlabel(r'$\text{Re}(C_7^{\prime\,\text{NP}})$')
plt.ylabel(r'$\text{Im}(C_7^\prime)$')
plt.legend()

plt.show()
예제 #2
0
                fit_wc_function = wc_fct,
                input_scale = 4.8,
            )

fits = OrderedDict()
fits['1'] = ['BR(B+->K*gamma)']
fits['2'] = ['BR(B->Xsgamma)']
fits['3'] = ['BR(B0->K*gamma)']
fits['4'] = ['BR(Bs->phigamma)']

obs_fastfits={}
for k, v in fits.items():
    obs_fastfits[k] = fastfit_obs('C7-C7p fit '+ k, v)      

for k, v in fits.items():
    obs_fastfits[k].make_measurement(threads=4)

x_max = .16

for i, f in enumerate(fits):
    fpl.likelihood_contour(obs_fastfits[f].log_likelihood,
                                    -x_max, x_max, -x_max, x_max, col=i+1, label=flavio.Observable.get_instance(fits[f][0]).tex,
                                    interpolation_factor=3, threads=4, steps=30)

plt.xlabel(r'$\text{Re}(C_7^{\prime\,\text{NP}})$')
plt.ylabel(r'$\text{Im}(C_7^\prime)$')
plt.legend(loc=2, bbox_to_anchor=(1.05, 1))

plt.show()

예제 #3
0
#=============================== The plot ===================================================
fig = plt.figure(figsize=(4, 4))
ax = plt.subplot(1, 1, 1)
x_max = 0.75
plt.xlim([0.1, 1])
plt.ylim([0.5, 10])
mpl.rcParams['text.latex.preamble'] = [
    r'\usepackage{amsmath}', r'\usepackage{hepunits}', r'\usepackage{mathpazo}'
]

for i, f in enumerate(fits):
    likelihood_contour(obs_fastfits[f].log_likelihood,
                       0.1,
                       1,
                       0.5,
                       10,
                       col=i + 1,
                       label=labels[f],
                       interpolation_factor=3,
                       threads=4)

likelihood_contour(global_fastfit.log_likelihood,
                   0.1,
                   1,
                   0.5,
                   10,
                   n_sigma=(1),
                   col=0,
                   interpolation_factor=10,
                   threads=4,
                   label='global')