mt = mt3.Mt3dms(modelname, 'nam_mt3dms', modflowmodel=ml, model_ws=dirs[1]) # Coupled to modflow model 'mf' adv = mt3.Mt3dAdv(mt, mixelm=-1, #-1 is TVD percel=0.05, nadvfd=0, #0 or 1 is upstream; 2 is central in space #particle based methods nplane=4, mxpart=1e7, itrack=2, dceps=1e-4, npl=16, nph=16, npmin=8, npmax=256) btn = mt3.Mt3dBtn(mt, icbund=1, prsity=ssz, sconc=sconc, ifmtcn=-1, chkmas=False, nprobs=10, nprmas=10, dt0=0.0, ttsmult=1.2, ttsmax=100.0, ncomp=1, nprs=nprs, timprs=timprs, mxstrn=1e8) dsp = mt3.Mt3dDsp(mt, al=0., trpt=1., trpv=1., dmcoef=0.) gcg = mt3.Mt3dGcg(mt, mxiter=1, iter1=50, isolve=3, cclose=1e-6, iprgcg=5) ssm = mt3.Mt3dSsm(mt, stress_period_data=ssm_data) mt.write_input() # Create the SEAWAT model structure mswtf = swt.Seawat(modelname, 'nam_swt', modflowmodel=ml, mt3dmodel=mt, exe_name=swtexe_name, model_ws=dirs[1]) # Coupled to modflow model mf and mt3dms model mt vdf = swt.SeawatVdf(mswtf, nswtcpl=1, iwtable=0, densemin=0, densemax=0, denseref=1000., denseslp=25., firstdt=1.0e-03) mswtf.write_input() # run seawat model if not skipRuns: m = mswtf.run_model(silent=False) # read seawat model data ucnfile = os.path.join(dirs[1], 'MT3D001.UCN')
def run_experiment(self, experiment): ''' Method for running an instantiated model structure. This method should always be implemented. :param case: keyword arguments for running the model. The case is a dict with the names of the uncertainties as key, and the values to which to set these uncertainties. ''' #NetLogo agent attributes to be passed to Python well objects #when new wells are created in NetLogo nl_read_sys_attribs = ['who', 'xcor', 'ycor'] nl_read_well_attribs = [ 'who', 'xcor', 'ycor', 'IsCold', 'z0', 'FilterLength', 'T_inj', 'Q' ] #NetLogo agent attributes to be updated by the Python objects after each period nl_update_well_attribs = ['T_modflow', 'H_modflow'] nl_update_globals = ['ztop', 'Laquifer'] self.netlogo.command('setup') for key, value in experiment.items(): if key in self.NetLogo_uncertainties: try: self.netlogo.command(self.command_format.format( key, value)) except jpype.JavaException as e: warning('Variable {0} throws exception: {}'.format( (key, str(e)))) logging.debug(self.netlogo.report(str(key))) if key in self.SEAWAT_uncertainties: setattr(self, key, value) #Set policy parameters if present if self.policy: for key, value in self.policy.items(): if (key in self.NetLogo_uncertainties and key != 'name'): self.netlogo.command(self.command_format.format( key, value)) elif key in self.SEAWAT_uncertainties: setattr(self, key, value) logging.info('Policy parameters set successfully') #Update NetLogo globals from input parameters for var in nl_update_globals: self.netlogo.command( self.command_format.format(var, getattr(self, var))) #Run the NetLogo setup routine, creating the agents #Create lists of Python objects based on the NetLogo agents self.netlogo.command('init-agents') sys_obj_list = update_runtime_objectlist(self.netlogo, [], nl_read_sys_attribs, breed='system', objclass=PySystem) well_obj_list, newgrid_flag = update_runtime_objectlist( self.netlogo, [], nl_read_well_attribs, breed='well', objclass=PyWell) #Assign values for uncertain NetLogo parameters logging.info('NetLogo parameters set successfully') #self.netlogo.command('init-agents') #Calculate geohydrological parameters linked to variable inputs rho_b = self.rho_solid * (1 - self.PEFF) kT_b = self.kT_s * (1 - self.PEFF) + self.kT_f * self.PEFF dmcoef = kT_b / (self.PEFF * self.rho_f * self.Cp_f) * 24 * 3600 trpt = self.al * self.trp_mult trpv = trpt #Initialize PyGrid object itype = mt3.Mt3dSsm.itype_dict() grid_obj = PyGrid() grid_obj.make_grid(well_obj_list, dmin=self.dmin, dmax=self.dmax, dz=self.dz, ztop=self.ztop, zbot=self.zbot, nstep=self.nstep, grid_extents=self.grid_extents) #Initial arrays for grid values (temperature, head) - for this case, assumes no groundwater flow #and uniform temperature grid_obj.ncol = len(grid_obj.XGR) - 1 grid_obj.delr = np.diff(grid_obj.XGR) grid_obj.nrow = len(grid_obj.YGR) - 1 grid_obj.delc = -np.diff(grid_obj.YGR) grid_obj.top = self.ztop * np.ones([grid_obj.nrow, grid_obj.ncol]) botm_range = np.arange(self.zbot, self.ztop, self.dz)[::-1] botm_2d = np.ones([grid_obj.nrow, grid_obj.ncol]) grid_obj.botm = botm_2d * botm_range[:, None, None] grid_obj.nlay = len(botm_range) grid_obj.IBOUND, grid_obj.ICBUND = boundaries( grid_obj) #Create grid boundaries #Initial arrays for grid values (temperature, head) init_grid = np.ones((grid_obj.nlay, grid_obj.nrow, grid_obj.ncol)) grid_obj.temp = 10. * init_grid grid_obj.HK = self.HK * init_grid grid_obj.VK = self.VK * init_grid #Set initial heads according to groundwater flow (based on mfLab Utrecht model) y_array = np.array([(grid_obj.YGR[:-1] - np.mean(grid_obj.YGR[:-1])) * self.PEFF * -self.gwflow_y / 365 / self.HK]) y_tile = np.array([np.tile(y_array.T, (1, grid_obj.ncol))]) x_array = (grid_obj.XGR[:-1] - np.mean( grid_obj.XGR[:-1])) * self.PEFF * -self.gwflow_x / 365 / self.HK y_tile += x_array grid_obj.head = np.tile(y_tile, (grid_obj.nlay, 1, 1)) #Set times at which to read SEAWAT output for each simulation period timprs = np.array([self.perlen]) nprs = len(timprs) logging.info('SEAWAT parameters set successfully') #Iterate the coupled model for period in range(self.run_length): #Set up the text output from NetLogo commands = [] self.fns = {} for outcome in self.outcomes: #if outcome.time: name = outcome.name fn = r'{0}{3}{1}{2}'.format(self._working_directory, name, '.txt', os.sep) self.fns[name] = fn fn = '"{}"'.format(fn) fn = fn.replace(os.sep, '/') if self.netlogo.report('is-agentset? {}'.format(name)): #If name is name of an agentset, we #assume that we should count the total number of agents nc = r'{2} {0} {3} {4} {1}'.format(fn, name, 'file-open', 'file-write', 'count') else: #It is not an agentset, so assume that it is #a reporter / global variable nc = r'{2} {0} {3} {1}'.format(fn, name, 'file-open', 'file-write') commands.append(nc) c_out = ' '.join(commands) self.netlogo.command(c_out) logging.info(' -- Simulating period {0} of {1}'.format( period, self.run_length)) #Run the NetLogo model for one tick self.netlogo.command('go') logging.debug('NetLogo step completed') #Create placeholder well list - required for MODFLOW WEL package if no wells active in NetLogo well_LRCQ_list = {} well_LRCQ_list[0] = [[0, 0, 0, 0]] ssm_data = {} ssm_data[0] = [[0, 0, 0, 0, itype['WEL']]] #Check the well agents which are active in NetLogo, and update the Python objects if required #The newgrid_flag indicates whether or not the grid should be recalculated to account for changes #in the list of active wells if well_obj_list: well_obj_list, newgrid_flag = update_runtime_objectlist( self.netlogo, well_obj_list, nl_read_well_attribs) if well_obj_list and newgrid_flag: #If the list of active wells has changed and if there are active wells, create a new grid object newgrid_obj = PyGrid() newgrid_obj.make_grid(well_obj_list, dmin=self.dmin, dmax=self.dmax, dz=self.dz, ztop=self.ztop, zbot=self.zbot, nstep=self.nstep, grid_extents=self.grid_extents) #Interpolate the temperature and head arrays to match the new grid newgrid_obj.temp = grid_interpolate(grid_obj.temp[0, :, :], grid_obj, newgrid_obj) newgrid_obj.head = grid_interpolate(grid_obj.head[0, :, :], grid_obj, newgrid_obj) #Use the new simulation grid grid_obj = newgrid_obj logging.debug('Python update completed') if well_obj_list: for i in well_obj_list: #Read well flows from NetLogo and locate each well in the simulation grid i.Q = read_NetLogo_attrib(self.netlogo, 'Q', i.who) i.calc_LRC(grid_obj) #Create well and temperature lists following MODFLOW/MT3DMS format well_LRCQ_list = create_LRCQ_list(well_obj_list, grid_obj) ssm_data = create_conc_list(well_obj_list) #Initialize MODFLOW packages using FloPy #ml = mf.Modflow(self.name, version='mf2005', exe_name=self.swtexe_name, model_ws=self.dirs[0]) swtm = swt.Seawat(self.name, exe_name=self.swtexe_name, model_ws=self.dirs[0]) discret = mf.ModflowDis(swtm, nrow=grid_obj.nrow, ncol=grid_obj.ncol, nlay=grid_obj.nlay, delr=grid_obj.delr, delc=grid_obj.delc, laycbd=0, top=self.ztop, botm=self.zbot, nper=self.nper, perlen=self.perlen, nstp=self.nstp, steady=self.steady) bas = mf.ModflowBas(swtm, ibound=grid_obj.IBOUND, strt=grid_obj.head) lpf = mf.ModflowLpf(swtm, hk=self.HK, vka=self.VK, ss=0.0, sy=0.0, laytyp=0, layavg=0) wel = mf.ModflowWel(swtm, stress_period_data=well_LRCQ_list) words = ['head', 'drawdown', 'budget', 'phead', 'pbudget'] save_head_every = 1 oc = mf.ModflowOc(swtm) pcg = mf.ModflowPcg(swtm, mxiter=200, iter1=200, npcond=1, hclose=0.001, rclose=0.001, relax=1.0, nbpol=0) #ml.write_input() #Initialize MT3DMS packages #mt = mt3.Mt3dms(self.name, 'nam_mt3dms', modflowmodel=ml, model_ws=self.dirs[0]) adv = mt3.Mt3dAdv( swtm, mixelm=0, #-1 is TVD percel=1, nadvfd=1, #Particle based methods nplane=0, mxpart=250000, itrack=3, dceps=1e-4, npl=5, nph=8, npmin=1, npmax=16) btn = mt3.Mt3dBtn(swtm, cinact=-100., icbund=grid_obj.ICBUND, prsity=self.PEFF, sconc=[grid_obj.temp][0], ifmtcn=-1, chkmas=False, nprobs=0, nprmas=1, dt0=0.0, ttsmult=1.5, ttsmax=20000., ncomp=1, nprs=nprs, timprs=timprs, mxstrn=9999) dsp = mt3.Mt3dDsp(swtm, al=self.al, trpt=trpt, trpv=trpv, dmcoef=dmcoef) rct = mt3.Mt3dRct(swtm, isothm=0, ireact=0, igetsc=0, rhob=rho_b) gcg = mt3.Mt3dGcg(swtm, mxiter=50, iter1=50, isolve=1, cclose=1e-3, iprgcg=0) ssm = mt3.Mt3dSsm(swtm, stress_period_data=ssm_data) #mt.write_input() #Initialize SEAWAT packages # mswtf = swt.Seawat(self.name, 'nam_swt', modflowmodel=ml, mt3dmsmodel=mt, # model_ws=self.dirs[0]) swtm.write_input() #Run SEAWAT #m = mswtf.run_model(silent=True) m = swtm.run_model(silent=True) logging.debug('SEAWAT step completed') #Copy Modflow/MT3DMS output to new files shutil.copyfile( os.path.join(self.dirs[0], self.name + '.hds'), os.path.join(self.dirs[0], self.name + str(period) + '.hds')) shutil.copyfile( os.path.join(self.dirs[0], 'MT3D001.UCN'), os.path.join(self.dirs[0], self.name + str(period) + '.UCN')) #Create head file object and read head array for next simulation period h_obj = bf.HeadFile( os.path.join(self.dirs[0], self.name + str(period) + '.hds')) grid_obj.head = h_obj.get_data(totim=self.perlen) #Create concentration file object and read temperature array for next simulation period t_obj = bf.UcnFile( os.path.join(self.dirs[0], self.name + str(period) + '.UCN')) grid_obj.temp = t_obj.get_data(totim=self.perlen) logging.debug('Output processed') if well_obj_list: for i in well_obj_list: #Update each active Python well object with the temperature and head at its grid location i.T_modflow = grid_obj.temp[i.L[0], i.R, i.C] i.H_modflow = grid_obj.head[i.L[0], i.R, i.C] #Update the NetLogo agents from the corresponding Python objects write_NetLogo_attriblist(self.netlogo, well_obj_list, nl_update_well_attribs) #As an example of data exchange, we can calculate the fraction of the simulated grid in which #the temperature change is significant, and send this value to a NetLogo global variable use = subsurface_use(grid_obj, grid_obj.temp) write_NetLogo_global(self.netlogo, 'SubsurfaceUse', use) logging.debug('NetLogo update completed') h_obj.file.close() t_obj.file.close() self.netlogo.command('file-close-all') self._handle_outcomes()
nplane=0, mxpart=250000, dceps=1e-4, npl=5, nph=8, npmin=1, npmax=16) btn = mt3.Mt3dBtn( mt, cinact=-100., icbund=grid_obj.ICBUND, prsity=grid_obj.PEFF, sconc=grid_obj.temp, #sconc2=grid_obj.salinity, ifmtcn=-1, chkmas=False, nprobs=0, nprmas=1, dt0=0, ttsmult=1, ttsmax=1., ncomp=1, mcomp=1, nprs=nprs, timprs=timprs, mxstrn=9999) dsp = mt3.Mt3dDsp(mt, al=al, trpt=trpt, trpv=trpv, multiDiff=True, dmcoef=grid_obj.Tdif) rct = mt3.Mt3dRct(mt,
def get_package(self, _mt): content = self.merge() return mt.Mt3dBtn(_mt, **content)