def run(flow, cloudburst, requests, local, sckt=None): latencies = [] if not local: print = logging.info bench_start = time.time() for i in range(requests): if i % 100 == 0: logging.info(f'On request {i}...') inp = Table([('user', StrType), ('recent', NumpyType)]) uid = np.random.randint(NUM_USERS) recent = np.random.randint(0, NUM_PRODUCT_SETS, 5) inp.insert([str(uid), recent]) start = time.time() flow.run(inp).get() end = time.time() latencies.append(end - start) bench_end = time.time() print_latency_stats(latencies, "E2E", not local, bench_end - bench_start) if sckt: bts = cp.dumps(latencies) sckt.send(bts)
def run(flow, cloudburst, requests, local, sckt=None): schema = [('classify', StrType), ('translate', StrType)] french = [ 'Je m\'appelle Pierre.', 'Comment allez-vous aujourd\'hui?', 'La nuit est longue et froide, et je veux rentrer chez moi.', 'Tu es venue a minuit, mais je me suis déja couché.', 'On veut aller dehors mais il faut rester dedans.' ] german = [ 'Ich bin in Berliner.', 'Die katz ist saß auf dem Stuhl.', 'Sie schwimmt im Regen.', 'Ich gehe in den Supermarkt, aber mir ist kalt.', 'Ich habe nie gedacht, dass du Amerikanerin bist.' ] english = [ 'What is the weather like today?', 'Why does it rain so much in April?', 'I like running but my ankles hurt.', 'I should go home to eat dinner before it gets too late.', 'I would like to hang out with my friends, but I have to work.' ] inputs = [] for _ in range(20): table = Table(schema) if random.random() < 0.5: other = random.choice(french) else: other = random.choice(german) vals = [other, random.choice(english)] table.insert(vals) inputs.append(table) logging.info('Starting benchmark...') latencies = [] bench_start = time.time() for i in range(requests): if i % 100 == 0: logging.info(f'On request {i}...') inp = random.choice(inputs) start = time.time() result = flow.run(inp).get() end = time.time() latencies.append(end - start) bench_end = time.time() print_latency_stats(latencies, "E2E", not local, bench_end - bench_start) if sckt: bts = cp.dumps(latencies) sckt.send(bts)
def run(self, _, inp: GroupbyTable): result = Table(inp.schema) for group, gtable in inp.get(): for row in gtable.get(): result.insert(row) return result
def run(cloudburst: CloudburstConnection, num_requests: int, data_size: str, do_optimize: bool): def stage1(self, row: Row) -> bytes: import numpy as np return np.random.rand(row['size']) def stage2(self, row: Row) -> int: return 3 print(f'Creating flow with {data_size} ({DATA_SIZES[data_size]}) inputs.') flow = Flow('colocate-benchmark', FlowType.PUSH, cloudburst) f1 = flow.map(stage1) p1 = f1.map(stage2, names=['val1']) p2 = f1.map(stage2, names=['val2']) p3 = f1.map(stage2, names=['val3']) p4 = f1.map(stage2, names=['val4']) p5 = f1.map(stage2, names=['val5']) # p6 = f1.map(stage2, names=['val6']) # p7 = f1.map(stage2, names=['val7']) # p8 = f1.map(stage2, names=['val8']) p1.join(p2).join(p3).join(p4).join(p5) # .join(p6).join(p7).join(p8) if do_optimize: flow = optimize(flow, rules=optimize_rules) print('Flow has been optimized...') flow.deploy() print('Flow successfully deployed!') latencies = [] inp = Table([('size', IntType)]) inp.insert([DATA_SIZES[data_size]]) print('Starting benchmark...') for i in range(num_requests): if i % 100 == 0 and i > 0: print(f'On request {i}...') start = time.time() res = flow.run(inp).get() end = time.time() latencies.append(end - start) print_latency_stats(latencies, 'E2E')
def classify_language(self, table: Table) -> (str, str): inputs = [row['classify'] for row in table.get()] predicts = self.model.predict(inputs)[0] predicts = [label[0].split('_')[-1] for label in predicts] result = [] idx = 0 for row in table.get(): result.append([predicts[idx], row['translate']]) idx += 1 return result
def run(self, cloudburst, aggregate, column, inp): serialized = False if type(inp) == bytes: serialized = True inp = deserialize(inp) if aggregate == 'count': aggfn = self.count if aggregate == 'min': aggfn = self.min if aggregate == 'max': aggfn = self.max if aggregate == 'sum': aggfn = self.sum if aggregate == 'average': aggfn = self.average if isinstance(inp, GroupbyTable): gb_col = inp.col val, _ = next(inp.get()) gb_typ = get_type(type(val)) result = Table([(gb_col, gb_typ), (aggregate, FloatType)]) for val, tbl in inp.get(): agg = aggfn(tbl, column) result.insert([val, float(agg)]) else: result = Table([(aggregate, FloatType)]) result.insert([float(aggnf(inp, column))]) if serialized: result = serialize(result) return result
def run(cloudburst: CloudburstConnection, num_requests: int, gamma: int, num_replicas: int): def stage1(self, val: int) -> int: return val + 1 def stage2(self, row: Row) -> float: import time from scipy.stats import gamma delay = gamma.rvs(3.0, scale=row['scale']) * 10 / 1000 # convert to ms time.sleep(delay) return delay def stage3(self, row: Row) -> float: return row['val'] print(f'Creating flow with {num_replicas} replicas and' + f' gamma={GAMMA_VALS[gamma]}') flow = Flow('fusion-benchmark', FlowType.PUSH, cloudburst) flow.map(stage1, col='val') \ .map(stage2, names=['val'], high_variance=True) \ .map(stage3, names=['val']) optimize_rules['compete_replicas'] = num_replicas flow = optimize(flow, rules=optimize_rules) print('Flow has been optimized...') flow.deploy() print('Flow successfully deployed!') latencies = [] inp = Table([('val', IntType), ('scale', FloatType)]) inp.insert([1, GAMMA_VALS[gamma]]) print('Starting benchmark...') for i in range(num_requests): if i % 100 == 0 and i > 0: print(f'On request {i}...') time.sleep(.300) # Sleep to let the queue drain. start = time.time() res = flow.run(inp).get() end = time.time() latencies.append(end - start) print_latency_stats(latencies, 'E2E')
def run(flow, cloudburst, requests, local, sckt=None): if not local: if not os.path.exists('imagenet_sample.zip'): raise RuntimeError( 'Expect to have the imagenet_sample directory locally.') os.system('unzip imagenet_sample.zip') else: if not os.path.exists('imagenet_sample/imagenet'): raise RuntimeError( 'Expect to have the imagenet_sample directory locally.') prefix = 'imagenet_sample/imagenet' files = os.listdir(prefix) files = [os.path.join(prefix, fname) for fname in files] inputs = [] logging.info('Loading input images...') for fname in files: table = Table([('img', NumpyType)]) img = np.array(Image.open(fname).convert('RGB').resize((224, 224))) table.insert([img]) inputs.append(table) logging.info('Starting benchmark...') latencies = [] bench_start = time.time() for i in range(requests): if i % 100 == 0: logging.info(f'On request {i}...') inp = random.choice(inputs) start = time.time() result = flow.run(inp).get() end = time.time() latencies.append(end - start) bench_end = time.time() print_latency_stats(latencies, "E2E", not local, bench_end - bench_start) if sckt: bts = cp.dumps(latencies) sckt.send(bts)
def english_to_german_gpu(self, table: Table) -> str: inputs = [row['translate'] for row in table.get()] if len(inputs) > 0: return self.model.translate(inputs) else: return []
def resnet_model_gpu(self, table: Table) -> (np.ndarray, int, float): """ ResNet101 for image classification on ResNet """ import torch originals = [row['img'] for row in table.get()] inputs = [torch.from_numpy(img) for img in originals] inputs = torch.stack(inputs, dim=0).cuda() out = self.resnet(inputs) _, indices = torch.sort(out, descending=True) percentage = torch.nn.functional.softmax(out, dim=1)[0] * 100 p_2 = percentage.cpu().detach().numpy() indicies = indices.cpu().detach().numpy() result = [] for i in range(len(originals)): index = indices[i][0].item() perc = p_2[indices[i][0]].item() img = originals[i] result.append([img, index, perc]) return result
def english_to_french(self, table: Table) -> str: if type(table) == Table: inputs = [row['translate'] for row in table.get()] else: inputs = [table] if len(inputs) > 0: return self.model.translate(inputs) else: return []
def run(self, cloudburst, lookup_key, dynamic: bool, input_object, inp: Table): from flow.types.basic import get_type serialized = False if type(inp) == bytes: inp = deserialize(inp) serialized = True if cloudburst is None or dynamic: obj = input_object lookup_key = next(inp.get())[lookup_key] else: obj = cloudburst.get(lookup_key) schema = list(inp.schema) schema.append((lookup_key, get_type(type(obj)))) new_table = Table(schema) for row in inp.get(): vals = [row[key] for key, _ in inp.schema] vals.append(obj) new_table.insert(vals) if serialized: new_table = serialize(new_table) return new_table
def run(self, _, fn, group, inp): batching = isinstance(inp, list) serialized = False if batching: if type(inp[0]) == bytes: serialized = True inp = [deserialize(tbl) for tbl in inp] else: if type(inp) == bytes: serialized = True inp = deserialize(inp) if batching: # Because we have batching enabled by default, we have to # assume these are lists if these are not merged into a multi # operator. We have to check these because a whole flow # operator will not have lists even when batching is # enabled. if type(group) == list: group = group[0] if type(fn) == list: fn = fn[0] inp, mappings = merge_tables(inp) if group and not isinstance(inp, GroupbyTable): raise RuntimeError( "Can't run a group filter over a non-grouped" + " table.") if group: result = GroupbyTable(inp.schema, inp.col) for group, gtable in inp.get(): if fn(self, next(gtable.get())): result.add_group(group, gtable) else: result = Table(inp.schema) for row in inp.get(): if fn(self, row): result.insert(row) if batching: result = demux_tables(result, mappings) if serialized: result = [serialize(tbl) for tbl in result] else: if serialized: result = serialize(result) return result
def run(cloudburst: CloudburstConnection, num_requests: int, num_fns: int, data_size: str, do_optimize: bool): def fusion_op(self, row: Row) -> bytes: return row['data'] print(f'Creating flow with {num_fns} operators and {data_size}' + f' ({DATA_SIZES[data_size]}) inputs.') flow = Flow('fusion-benchmark', FlowType.PUSH, cloudburst) marker = flow for _ in range(num_fns): marker = marker.map(fusion_op, names=['data']) if do_optimize: flow = optimize(flow, rules=optimize_rules) print('Flow has been optimized...') flow.deploy() print('Flow successfully deployed!') latencies = [] inp = Table([('data', BtsType)]) inp.insert([os.urandom(DATA_SIZES[data_size])]) print('Starting benchmark...') for i in range(num_requests): if i % 100 == 0 and i > 0: print(f'On request {i}...') start = time.time() res = flow.run(inp).get() end = time.time() latencies.append(end - start) print_latency_stats(latencies, 'E2E')
def run(self, _, col: str, inp: Table): serialized = False if type(inp) == bytes: serialized = True inp = deserialize(inp) gb_table = GroupbyTable(inp.schema, col) for row in inp.get(): gb_table.add_row(row) if serialized: gb_table = serialize(gb_table) return gb_table
def inceptionv3_model_gpu(self, table: Table) -> (int, float): import torch # Shortcut for empty input. if table.size() == 0: return [] originals = [row['img'] for row in table.get()] inputs = [torch.from_numpy(img) for img in originals] inputs = torch.stack(inputs, dim=0).cuda() out = self.incept(inputs) _, indices = torch.sort(out, descending=True) percentage = torch.nn.functional.softmax(out, dim=1)[0] * 100 p_2 = percentage.cpu().detach().numpy() result = [] for i in range(len(originals)): index = indices[i][0].item() perc = p_2[indices[i][0]].item() result.append([index, perc]) return result
def cascade_predict_batch(self, table: Table) -> str: results = [] for row in table.get(): resnet_index = row['resnet_index'] resnet_max_prob = row['resnet_max_prob'] incept_index = row['incept_index'] incept_max_prob = row['incept_max_prob'] if incept_max_prob is None: # Didn't go to inception because resnet prediction was confident # enough. results.append(self.classes[resnet_index]) else: # choose the distribution with the higher max_prob. if resnet_max_prob > incept_max_prob: results.append(self.classes[resnet_index]) else: results.append(self.classes[incept_index]) return results
def resnet_model_cpu(self, table: Table) -> str: """ AlexNet for image classification on ImageNet """ import torch inputs = [] for row in table.get(): img = self.transforms(row['img']) inputs.append(img) inputs = torch.stack(inputs, dim=0) output = self.resnet(inputs) _, indices = torch.sort(output, descending=True) indices = indices.detach().numpy() result = [] for idx_set in indices: index = idx_set[0] result.append(self.classes[index]) return result
def run(cloudburst: CloudburstConnection, num_requests: int, data_size: str, breakpoint: bool, do_optimize: bool): print('Creating data...') size = DATA_SIZES[data_size] for i in range(1, NUM_DATA_POINTS+1): arr = np.random.rand(size) cloudburst.put_object('data-' + str(i), arr) def stage1(self, row: Row) -> (int, str): idx = int(row['req_num'] / 10) + 1 key = 'data-%d' % (idx) return idx, key def stage2(self, row: Row) -> str: import numpy as np arr = row[row['key']] return float(np.sum(arr)) print(f'Creating flow with {data_size} ({DATA_SIZES[data_size]}) inputs.') flow = Flow('locality-benchmark', FlowType.PUSH, cloudburst) flow.map(stage1, names=['index', 'key']) \ .lookup('key', dynamic=True) \ .map(stage2, names=['sum']) optimize_rules['breakpoint'] = breakpoint if do_optimize: flow = optimize(flow, rules=optimize_rules) print('Flow has been optimized...') flow.deploy() print('Flow successfully deployed!') latencies = [] inp = Table([('req_num', IntType)]) if breakpoint: print('Starting warmup...') for i in range(NUM_DATA_POINTS): inp = Table([('req_num', IntType)]) inp.insert([i * 10]) res = flow.run(inp).get() print('Pausing to let cache metadata propagate...') time.sleep(15) print('Starting benchmark...') for i in range(num_requests): if i % 100 == 0 and i > 0: print(f'On request {i}...') inp = Table([('req_num', IntType)]) inp.insert([i]) start = time.time() res = flow.run(inp).get() end = time.time() latencies.append(end - start) with open('data.bts', 'wb') as f: from cloudburst.shared.serializer import Serializer ser = Serializer() bts = ser.dump(latencies) f.write(bts) print_latency_stats(latencies, 'E2E')
def run(cloudburst: CloudburstConnection, num_requests: int, batch_size: int, gpu: bool): with open('imagenet_classes.txt', 'r') as f: classes = [line.strip() for line in f.readlines()] cloudburst.put_object('imagenet-classes', classes) def resnet_init_gpu(self, cloudburst): import os import torch import torchvision from torchvision import transforms tpath = os.path.join(os.getenv('TORCH_HOME'), 'checkpoints') self.resnet = torch.load(os.path.join(tpath, 'resnet101.model')).cuda() self.resnet.eval() self.transforms = transforms.Compose([ transforms.ToPILImage(), transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.classes = cloudburst.get('imagenet-classes') def resnet_model_gpu(self, table: Table) -> str: """ AlexNet for image classification on ImageNet """ import torch inputs = [] for row in table.get(): img = self.transforms(row['img']) inputs.append(img) inputs = torch.stack(inputs, dim=0).cuda() output = self.resnet(inputs) _, indices = torch.sort(output, descending=True) indices = indices.cpu().detach().numpy() result = [] for idx_set in indices: index = idx_set[0] result.append(self.classes[index]) return result def resnet_init_cpu(self, cloudburst): import os import torch import torchvision from torchvision import transforms tpath = os.path.join(os.getenv('TORCH_HOME'), 'checkpoints') self.resnet = torch.load(os.path.join(tpath, 'resnet101.model')) self.resnet.eval() self.transforms = transforms.Compose([ transforms.ToPILImage(), transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.classes = cloudburst.get('imagenet-classes') def resnet_model_cpu(self, table: Table) -> str: """ AlexNet for image classification on ImageNet """ import torch inputs = [] for row in table.get(): img = self.transforms(row['img']) inputs.append(img) inputs = torch.stack(inputs, dim=0) output = self.resnet(inputs) _, indices = torch.sort(output, descending=True) indices = indices.detach().numpy() result = [] for idx_set in indices: index = idx_set[0] result.append(self.classes[index]) return result print(f'Creating flow with size {batch_size} batches.') flow = Flow('batching-benchmark', FlowType.PUSH, cloudburst) if gpu: flow.map(resnet_model_gpu, init=resnet_init_gpu, names=['class'], gpu=True, batching=True) else: flow.map(resnet_model_cpu, init=resnet_init_cpu, names=['class'], batching=True) flow.deploy() print('Flow successfully deployed!') latencies = [] inp = Table([('img', NumpyType)]) img = np.array(Image.open('panda.jpg').convert('RGB').resize((224, 224))) inp.insert([img]) kvs = cloudburst.kvs_client if gpu: print('Starting GPU warmup...') for _ in range(50): flow.run(inp).get() print('Finished warmup...') print('Starting benchmark...') for i in range(num_requests): if i % 100 == 0 and i > 0: print(f'On request {i}...') futs = [] for _ in range(batch_size): futs.append(flow.run(inp)) pending = set([fut.obj_id for fut in futs]) # Break these apart to batch the KVS get requests. start = time.time() while len(pending) > 0: get_start = time.time() response = kvs.get(list(pending)) for key in response: if response[key] is not None: pending.discard(key) end = time.time() latencies.append(end - start) compute_time = np.mean(latencies) * num_requests tput = (batch_size * num_requests) / (compute_time) print('THROUGHPUT: %.2f' % (tput)) print_latency_stats(latencies, 'E2E')
def run(self, _, on, how, left, right): serialized = False if type(left) == bytes: left = deserialize(left) right = deserialize(right) serialized = True # Note: We currently don't support batching with custom # seriralization for joins. Shouldn't be hard to implement but # skipping it for expediency. batching = False if type(left) == list: batching = True _, left = merge_tables(left) mappings, right = merge_tables(right) new_schema = merge_schema(left.schema, right.schema) result = Table(new_schema) ljoin = (how == 'left') ojoin = (how == 'outer') # Track whether each right row has been inserted for outer # joins. rindex_map = {} for lrow in left.get(): lrow_inserted = False idx = 0 for rrow in right.get(): if lrow[on] == rrow[on]: new_row = merge_row(lrow, rrow, new_schema) result.insert(new_row) lrow_inserted = True rindex_map[idx] = True idx += 1 if not lrow_inserted and (ljoin or ojoin): rvals = [None] * len(right.schema) rrow = Row(right.schema, rvals, lrow[Row.qid_key]) new_row = merge_row(lrow, rrow, new_schema) result.insert(new_row) if ojoin: idx = 0 for row in right.get(): if idx not in rindex_map: lvals = [None] * len(left.schema) lrow = Row(left.schema, lvals, row[Row.qid_key]) new_row = merge_row(lrow, row, new_schema) result.insert(new_row) idx += 1 if serialized: result = serialize(result) if batching: result = demux_tables(result, mappings) return result
flow = optimize(flow, rules=optimize_rules) print('Deploying flow...') flow.deploy() local = args.local[0].lower() == 'true' if local: run(flow, cloudburst, args.requests[0], local) else: flow.cloudburst = None # Hack to serialize and send flow. queue = [flow] while len(queue) > 0: op = queue.pop(0) op.cb_fn = None queue.extend(op.downstreams) sockets = [] benchmark_ips = [] with open('benchmarks.txt', 'r') as f: benchmark_ips = [line.strip() for line in f.readlines()] sample_input = Table([('img', NumpyType)]) img = np.array( Image.open('panda.jpg').convert('RGB').resize((224, 224))) sample_input.insert([img]) run_distributed_benchmark(flow, args.requests[0], 'cascade', args.threads[0], benchmark_ips, sample_input)
a_index = predict_row['alexnet_index'] a_perc = predict_row['alexnet_perc'] r_index = predict_row['resnet_index'] r_perc = predict_row['resnet_perc'] all_percentages = (a_perc + r_perc) / 2 indices = np.argsort(all_percentages)[::-1] return classes[indices[0]] import base64 import sys from cloudburst.client.client import CloudburstConnection table = Table([('img', StrType)]) img = base64.b64encode(open('panda.jpg', "rb").read()).decode('ascii') table.insert([img]) cloudburst = CloudburstConnection(sys.argv[1], '3.226.122.35') flow = Flow('ensemble-flow', FlowType.PUSH, cloudburst) img = flow.map(transform, init=transform_init, names=['img']) anet = img.map(alexnet_model, init=alexnet_init, names=['alexnet_index', 'alexnet_perc']) rnet = img.map(resnet_model, init=resnet_init, names=['resnet_index', 'resnet_perc']) anet.join(rnet).map(ensemble_predict, names=['class']) flow.deploy() from cloudburst.server.benchmarks.utils import print_latency_stats
# product_set = np.random.randn(2500, 512) # key = 'category-' + str(i) # cloudburst.put_object(key, product_set) print('Deploying flow...') flow.deploy() print('Starting warmup phase...') for i in range(NUM_PRODUCT_SETS): if i % 100 == 0: print(f'On warmup {i}...') uid = np.random.randint(NUM_USERS) recent = np.array([i, 0, 0, 0, 0]) inp = Table([('user', StrType), ('recent', NumpyType)]) inp.insert([str(uid), recent]) flow.run(inp).get() print('Starting benchmark...') local = args.local[0].lower() == 'true' if local: run(flow, cloudburst, args.requests[0], local) else: flow.cloudburst = None # Hack to serialize and send flow. queue = [flow] while len(queue) > 0: op = queue.pop(0) op.cb_fn = None
cloudburst.list() import random import string salt = "".join(random.choices(string.ascii_letters, k=6)) print("Running sanity check") cloud_sq = cloudburst.register(lambda _, x: x * x, "square-2"+salt) print(cloud_sq(2).get()) cloudburst.delete_dag("dag") cloudburst.register_dag("dag", ["square-2"+salt], []) print(cloudburst.call_dag("dag", {"square-2"+salt: [2]}).get()) # 1 / 0 print("Running example flow") dataflow = Flow("example-flow"+salt, FlowType.PUSH, cloudburst) dataflow.map(map_fn, names=["sum"]).filter(filter_fn) table = Table([("a", IntType), ("b", IntType)]) table.insert([1, 2]) table.insert([1, 3]) table.insert([1, 4]) dataflow.register() dataflow.deploy() print(dataflow) print("deployed") print(dataflow.run(table).get())
def transform_batch(self, table: Table) -> np.ndarray: return [self.transform(row['img']).detach().numpy() for row in table.get()]
def run(self, cloudburst, fn, fntype, col, names, inp): # Merge all of the tables. serialized = False batching = self.batching and isinstance(inp, list) if batching: if type(inp[0]) == bytes: inp = [deserialize(tbl) for tbl in inp] serialized = True # inp will be a list of Tables. If it not, this is part of # a MultiOperator, and everything is taken care of for us. merged, mappings = merge_tables(inp) inp = merged # This will all be repeated because of the way Cloudburst's # batching works, so we just pick the first one. But we # check because even with batching enabled, in a multi # operator, we will not have to deal with this. if type(fn) == list: fn = fn[0] if type(fntype) == list: fntype = fntype[0] if type(col) == list: col = col[0] if type(names) == list and type(names[0]) == list: names = names[0] else: if type(inp) == bytes: inp = deserialize(inp) serialized = True schema = [] if col is None: if len(names) != 0: schema = list(zip(names, fntype.ret)) else: for i in range(len(fntype.ret)): schema.append((str(i), fntype.ret[i])) else: for name, tp in inp.schema: if name != col: schema.append((name, tp)) else: if len(names) != 0: schema.append((names[0], fntype.ret[0])) else: schema.append((name, fntype.ret[0])) if isinstance(inp, GroupbyTable): result = GroupbyTable(schema, inp.col) for group, gtable in inp.get(): result.add_group(group, self.run(fn, fntype, col, gtable)) else: result = Table(schema) if self.batching or self.multi: res = fn(self, inp) for val in res: if type(val) == tuple: val = list(val) elif type(val) != list: val = [val] result.insert(val) else: for row in inp.get(): if col is None: vals = fn(self, row) if type(vals) == tuple: vals = list(vals) elif type(vals) != list: vals = [vals] result.insert(vals, row[Row.qid_key]) else: val = fn(self, row[col]) new_vals = [] for name, _ in inp.schema: if name == col: new_vals.append(val) else: new_vals.append(row[name]) result.insert(new_vals, row[Row.qid_key]) if batching: # Unmerge all the tables. tables = demux_tables(result, mappings) result = tables if serialized: result = [serialize(tbl) for tbl in result] else: if serialized: result = serialize(result) if self.send_broadcast: import uuid uid = str(uuid.uuid4()) cloudburst.put(uid, result) result = uid return result
dest='benchmarks', required=True) args = parser.parse_args() benchmark_ips = [] with open(args.benchmarks[0], 'r') as f: benchmark_ips = f.readlines() cloudburst = CloudburstConnection(args.cloudburst[0], args.ip[0]) print('Successfully connected to Cloudburst') flow = Flow('scaling-benchmark', FlowType.PUSH, cloudburst) flow.map(stage1, names=['val']).map(stage2, names=['val']) table = Table([('val', IntType)]) table.insert([1]) num_bench = len(benchmark_ips) num_start = int(start_percent * num_bench) flow.cloudburst = None # Hack to serialize and send flow. queue = [flow] while len(queue) > 0: op = queue.pop(0) op.cb_fn = None queue.extend(op.downstreams) flow = cp.dumps(flow)
flow = optimize(flow, rules=optimize_rules) print('Deploying flow...') flow.deploy() print('Starting benchmark...') local = args.local[0].lower() == 'true' if local: run(flow, cloudburst, args.requests[0], local) else: flow.cloudburst = None # Hack to serialize and send flow. queue = [flow] while len(queue) > 0: op = queue.pop(0) op.cb_fn = None queue.extend(op.downstreams) sockets = [] benchmark_ips = [] with open('benchmarks.txt', 'r') as f: benchmark_ips = [line.strip() for line in f.readlines()] sample_input = Table([('classify', StrType), ('translate', StrType)]) sample_input.insert(['Je m\'appelle Pierre.', 'How are you?']) run_distributed_benchmark(flow, args.requests[0], 'nmt', args.threads[0], benchmark_ips, sample_input)