예제 #1
0
def Yun_Heo_Kim(m, x, D, rhol, mul, Hvap, sigma, q=None, Te=None):
    r'''Calculates heat transfer coefficient for film boiling of saturated
    fluid in any orientation of flow. Correlation
    is as shown in [1]_ and [2]_, and also reviewed in [3]_.

    Either the heat flux or excess temperature is required for the calculation
    of heat transfer coefficient. Uses liquid Reynolds number, Weber
    number, and Boiling number. Weber number is defined in terms of the velocity
    if all fluid were liquid.

    .. math::
        h_{tp} = 136876(Bg\cdot We_l)^{0.1993} Re_l^{-0.1626}

    .. math::
        Re_l = \frac{G D (1-x)}{\mu_l}

    .. math::
        We_l = \frac{G^2 D}{\rho_l \sigma}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval []
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    mul : float
        Viscosity of liquid [Pa*s]
    Hvap : float
        Heat of vaporization of liquid [J/kg]
    sigma : float
        Surface tension of liquid [N/m]
    q : float, optional
        Heat flux to wall [W/m^2]
    Te : float, optional
        Excess temperature of wall, [K]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    [1]_ has been reviewed.

    Examples
    --------
    >>> Yun_Heo_Kim(m=1, x=0.4, D=0.3, rhol=567., mul=156E-6, sigma=0.02, Hvap=9E5, q=1E4)
    9479.313988550184

    References
    ----------
    .. [1] Yun, Rin, Jae Hyeok Heo, and Yongchan Kim. "Evaporative Heat
       Transfer and Pressure Drop of R410A in Microchannels." International
       Journal of Refrigeration 29, no. 1 (January 2006): 92-100.
       doi:10.1016/j.ijrefrig.2005.08.005.
    .. [2] Yun, Rin, Jae Hyeok Heo, and Yongchan Kim. "Erratum to 'Evaporative
       Heat Transfer and Pressure Drop of R410A in Microchannels; [Int. J.
       Refrigeration 29 (2006) 92-100]." International Journal of Refrigeration
       30, no. 8 (December 2007): 1468. doi:10.1016/j.ijrefrig.2007.08.003.
    .. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella.
       "Review and Comparative Analysis of Studies on Saturated Flow Boiling in
       Small Channels." Nanoscale and Microscale Thermophysical Engineering 12,
       no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
    '''
    G = m/(pi/4*D**2)
    V = G/rhol
    Rel = G*D*(1-x)/mul
    We = Weber(V=V, L=D, rho=rhol, sigma=sigma)
    if q is not None:
        Bg = Boiling(G=G, q=q, Hvap=Hvap)
        return 136876*(Bg*We)**0.1993*Rel**-0.1626
    elif Te is not None:
        A = 136876*(We)**0.1993*Rel**-0.1626*(Te/G/Hvap)**0.1993
        return A**(10000/8007.)
    else:
        raise ValueError('Either q or Te is needed for this correlation')
예제 #2
0
def Sun_Mishima(m, D, rhol, rhog, mul, kl, Hvap, sigma, q=None, Te=None):
    r'''Calculates heat transfer coefficient for film boiling of saturated
    fluid in any orientation of flow. Correlation
    is as shown in [1]_, and also reviewed in [2]_.

    Either the heat flux or excess temperature is required for the calculation
    of heat transfer coefficient. Uses liquid-only Reynolds number, Weber
    number, and Boiling number. Weber number is defined in terms of the velocity
    if all fluid were liquid.

    .. math::
        h_{tp} = \frac{ 6 Re_{lo}^{1.05} Bg^{0.54}}
        {We_l^{0.191}(\rho_l/\rho_g)^{0.142}}\frac{k_l}{D}

    .. math::
        Re_{lo} = \frac{G_{tp}D}{\mu_l}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    mul : float
        Viscosity of liquid [Pa*s]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    Hvap : float
        Heat of vaporization of liquid [J/kg]
    sigma : float
        Surface tension of liquid [N/m]
    q : float, optional
        Heat flux to wall [W/m^2]
    Te : float, optional
        Excess temperature of wall, [K]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    [1]_ has been reviewed.

    [1]_ used 2501 data points to derive the results, covering
    hydraulic diameters from 0.21 to 6.05 mm and 11 different fluids.


    Examples
    --------
    >>> Sun_Mishima(m=1, D=0.3, rhol=567., rhog=18.09, kl=0.086, mul=156E-6, sigma=0.02, Hvap=9E5, Te=10)
    507.6709168372167

    References
    ----------
    .. [1] Sun, Licheng, and Kaichiro Mishima. "An Evaluation of Prediction
       Methods for Saturated Flow Boiling Heat Transfer in Mini-Channels."
       International Journal of Heat and Mass Transfer 52, no. 23-24 (November
       2009): 5323-29. doi:10.1016/j.ijheatmasstransfer.2009.06.041.
    .. [2] Fang, Xiande, Zhanru Zhou, and Dingkun Li. "Review of Correlations
       of Flow Boiling Heat Transfer Coefficients for Carbon Dioxide."
       International Journal of Refrigeration 36, no. 8 (December 2013):
       2017-39. doi:10.1016/j.ijrefrig.2013.05.015.
    '''
    G = m/(pi/4*D**2)
    V = G/rhol
    Relo = G*D/mul
    We = Weber(V=V, L=D, rho=rhol, sigma=sigma)
    if q is not None:
        Bg = Boiling(G=G, q=q, Hvap=Hvap)
        return 6*Relo**1.05*Bg**0.54/(We**0.191*(rhol/rhog)**0.142)*kl/D
    elif Te is not None:
        A = 6*Relo**1.05/(We**0.191*(rhol/rhog)**0.142)*kl/D
        return A**(50/23.)*Te**(27/23.)/(G**(27/23.)*Hvap**(27/23.))
    else:
        raise ValueError('Either q or Te is needed for this correlation')
예제 #3
0
def Lazarek_Black(m, D, mul, kl, Hvap, q=None, Te=None):
    r'''Calculates heat transfer coefficient for film boiling of saturated
    fluid in vertical tubes for either upward or downward flow. Correlation
    is as shown in [1]_, and also reviewed in [2]_ and [3]_.

    Either the heat flux or excess temperature is required for the calculation
    of heat transfer coefficient.

    Quality independent. Requires no properties of the gas.
    Uses a Reynolds number assuming all the flow is liquid.

    .. math::
        h_{tp} = 30 Re_{lo}^{0.857} Bg^{0.714} \frac{k_l}{D}

    .. math::
        Re_{lo} = \frac{G_{tp}D}{\mu_l}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    D : float
        Diameter of the channel [m]
    mul : float
        Viscosity of liquid [Pa*s]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    Hvap : float
        Heat of vaporization of liquid [J/kg]
    q : float, optional
        Heat flux to wall [W/m^2]
    Te : float, optional
        Excess temperature of wall, [K]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    [1]_ has been reviewed.

    [2]_ claims it was developed for a range of quality 0-0.6,
    Relo 860-5500, mass flux 125-750 kg/m^2/s, q of 1.4-38 W/cm^2, and with a
    pipe diameter of 3.1 mm. Developed with data for R113 only.

    Examples
    --------
    >>> Lazarek_Black(m=10, D=0.3, mul=1E-3, kl=0.6, Hvap=2E6, Te=100)
    9501.932636079293

    References
    ----------
    .. [1] Lazarek, G. M., and S. H. Black. "Evaporative Heat Transfer,
       Pressure Drop and Critical Heat Flux in a Small Vertical Tube with
       R-113." International Journal of Heat and Mass Transfer 25, no. 7 (July
       1982): 945-60. doi:10.1016/0017-9310(82)90070-9.
    .. [2] Fang, Xiande, Zhanru Zhou, and Dingkun Li. "Review of Correlations
       of Flow Boiling Heat Transfer Coefficients for Carbon Dioxide."
       International Journal of Refrigeration 36, no. 8 (December 2013):
       2017-39. doi:10.1016/j.ijrefrig.2013.05.015.
    .. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella.
       "Review and Comparative Analysis of Studies on Saturated Flow Boiling in
       Small Channels." Nanoscale and Microscale Thermophysical Engineering 12,
       no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
    '''
    G = m/(pi/4*D**2)
    Relo = G*D/mul
    if q is not None:
        Bg = Boiling(G=G, q=q, Hvap=Hvap)
        return 30*Relo**0.857*Bg**0.714*kl/D
    elif Te is not None:
        # Solved with sympy
        return 27000*30**(71/143)*(1./(G*Hvap))**(357/143)*Relo**(857/286)*Te**(357/143)*kl**(500/143)/D**(500/143)
    else:
        raise ValueError('Either q or Te is needed for this correlation')
예제 #4
0
def Li_Wu(m, x, D, rhol, rhog, mul, kl, Hvap, sigma, q=None, Te=None):
    r'''Calculates heat transfer coefficient for film boiling of saturated
    fluid in any orientation of flow. Correlation
    is as shown in [1]_, and also reviewed in [2]_ and [3]_.

    Either the heat flux or excess temperature is required for the calculation
    of heat transfer coefficient. Uses liquid Reynolds number, Bond number,
    and Boiling number.

    .. math::
        h_{tp} = 334 Bg^{0.3}(Bo\cdot Re_l^{0.36})^{0.4}\frac{k_l}{D}

    .. math::
        Re_{l} = \frac{G(1-x)D}{\mu_l}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval []
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    mul : float
        Viscosity of liquid [Pa*s]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    Hvap : float
        Heat of vaporization of liquid [J/kg]
    sigma : float
        Surface tension of liquid [N/m]
    q : float, optional
        Heat flux to wall [W/m^2]
    Te : float, optional
        Excess temperature of wall, [K]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    [1]_ has been reviewed.

    [1]_ used 18 sets of experimental data to derive the results, covering
    hydraulic diameters from 0.19 to 3.1 mm and 12 different fluids.

    Examples
    --------
    >>> Li_Wu(m=1, x=0.2, D=0.3, rhol=567., rhog=18.09, kl=0.086, mul=156E-6, sigma=0.02, Hvap=9E5, q=1E5)
    5345.409399239492

    References
    ----------
    .. [1] Li, Wei, and Zan Wu. "A General Correlation for Evaporative Heat
       Transfer in Micro/mini-Channels." International Journal of Heat and Mass
       Transfer 53, no. 9-10 (April 2010): 1778-87.
       doi:10.1016/j.ijheatmasstransfer.2010.01.012.
    .. [2] Fang, Xiande, Zhanru Zhou, and Dingkun Li. "Review of Correlations
       of Flow Boiling Heat Transfer Coefficients for Carbon Dioxide."
       International Journal of Refrigeration 36, no. 8 (December 2013):
       2017-39. doi:10.1016/j.ijrefrig.2013.05.015.
    .. [3] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
       Predictive Methods for Pressure Drop in Adiabatic, Condensing and
       Boiling Mini/micro-Channel Flows." International Journal of Heat and
       Mass Transfer 77 (October 2014): 74-97.
       doi:10.1016/j.ijheatmasstransfer.2014.04.035.
    '''
    G = m/(pi/4*D**2)
    Rel = G*D*(1-x)/mul
    Bo = Bond(rhol=rhol, rhog=rhog, sigma=sigma, L=D)
    if q is not None:
        Bg = Boiling(G=G, q=q, Hvap=Hvap)
        return 334*Bg**0.3*(Bo*Rel**0.36)**0.4*kl/D
    elif Te is not None:
        A = 334*(Bo*Rel**0.36)**0.4*kl/D
        return A**(10/7.)*Te**(3/7.)/(G**(3/7.)*Hvap**(3/7.))
    else:
        raise ValueError('Either q or Te is needed for this correlation')