예제 #1
0
import os

from flytekit.contrib.notebook.tasks import spark_notebook
from flytekit.sdk.tasks import inputs, outputs
from flytekit.sdk.types import Types
from flytekit.sdk.workflow import workflow_class, Input


interactive_spark = spark_notebook(
    notebook_path=os.path.join(os.path.dirname(os.path.abspath(__file__)), "spark-notebook.ipynb"),
    inputs=inputs(partitions=Types.Integer),
    outputs=outputs(pi=Types.Float),
    )


@workflow_class
class FlyteNotebookSparkWorkflow(object):
    partitions = Input(Types.Integer, default=100)
    out1 = interactive_spark(partitions=partitions)
예제 #2
0
    def get_sdk_node(
            self,
            pipeline_context,
            instance,
            pipeline_run,
            step_key,
            task_type=constants.SdkTaskType.PYTHON_TASK,
            cache_version="",
            retries=0,
            interruptible=False,
            deprecated="",
            storage_request=None,
            cpu_request=None,
            gpu_request=None,
            memory_request=None,
            storage_limit=None,
            cpu_limit=None,
            gpu_limit=None,
            memory_limit=None,
            cache=False,
            timeout=datetime.timedelta(seconds=0),
            environment=None,
    ):
        execution_step = self.execution_plan.get_step_by_key(step_key)
        flyte_inputs = self.flyte_inputs(execution_step.step_input_dict,
                                         execution_step.solid_name)
        flyte_outputs = self.flyte_outputs(execution_step.step_output_dict,
                                           execution_step.solid_name)

        def wrapper(wf_params, *args, **kwargs):  # pylint: disable=unused-argument
            # TODO: We can't update config values via inputs from Flyte, because they are immutable
            plan = self.execution_plan.build_subset_plan([step_key])
            for param, arg in kwargs.items():
                self.inject_intermediates(pipeline_context, execution_step,
                                          param, arg)

            results = list(
                execute_plan(
                    plan,
                    instance,
                    run_config=self.run_config,
                    pipeline_run=pipeline_run,
                ))

            for result in results:
                step_context = pipeline_context.for_step(execution_step)
                self.output_value(step_context, step_key, result,
                                  execution_step, kwargs)

        # This will take the wrapper definition and re-create it with explicit parameters as keyword argumentss
        wrapper = forge.sign(forge.arg("wf_params"),
                             *map(forge.arg, flyte_inputs.keys()),
                             *map(forge.arg, flyte_outputs.keys()))(wrapper)

        # flytekit uses this name for an internal representation, make it unique to the step key
        wrapper.__name__ = execution_step.solid_name

        task = sdk_runnable.SdkRunnableTask(
            task_function=wrapper,
            task_type=task_type,
            discovery_version=cache_version,
            retries=retries,
            interruptible=interruptible,
            deprecated=deprecated,
            storage_request=storage_request,
            cpu_request=cpu_request,
            gpu_request=gpu_request,
            memory_request=memory_request,
            storage_limit=storage_limit,
            cpu_limit=cpu_limit,
            gpu_limit=gpu_limit,
            memory_limit=memory_limit,
            discoverable=cache,
            timeout=timeout,
            environment=environment,
            custom={},
        )

        if flyte_inputs:
            task = inputs(task, **flyte_inputs)
        if flyte_outputs:
            task = outputs(task, **flyte_outputs)

        return task
예제 #3
0
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from flytekit.sdk.types import Types
from flytekit.sdk.tasks import inputs, outputs

from flytekit.sdk.workflow import workflow_class, Input
from flytekit.contrib.notebook.tasks import python_notebook

# The path
interactive_python = python_notebook(
    notebook_path="./notebook-task-examples/python-notebook.ipynb",
    inputs=inputs(pi=Types.Float),
    outputs=outputs(out=Types.Float),
    cpu_request="1",
    memory_request="1G")


@workflow_class
class FlyteNotebookWorkflow(object):
    out2 = interactive_python(pi=3.14)