예제 #1
0
파일: topology.py 프로젝트: Jeswang/icarus
def topology_four_child_tree(network_cache=0.05, n_contents=100000, seed=None):
    """
    Returns a tree topology
    Parameters
    ----------
    network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    h = 5  # depth of the tree
    topology = fnss.k_ary_tree_topology(4, h)
    topology.add_node(1365, depth=-1)
    topology.add_path([0, 1365])

    receivers = [
        v for v in topology.nodes_iter() if topology.node[v]['depth'] == h
    ]
    sources = [
        v for v in topology.nodes_iter() if topology.node[v]['depth'] == -1
    ]
    caches = [
        v for v in topology.nodes_iter()
        if topology.node[v]['depth'] >= 0 and topology.node[v]['depth'] < h
    ]
    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology,
                                                  range(1, n_contents + 1),
                                                  sources,
                                                  seed=seed)
    for v in sources:
        fnss.add_stack(topology, v, 'source',
                       {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    cache_placement = uniform_cache_placement(topology,
                                              network_cache * n_contents,
                                              caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',
                                     [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return topology
예제 #2
0
def topology_path(n, delay=1, **kwargs):
    """Return a path topology with a receiver on node `0` and a source at node
    'n-1'

    Parameters
    ----------
    n : int (>=3)
        The number of nodes
    delay : float
        The link delay in milliseconds

    Returns
    -------
    topology : IcnTopology
        The topology object
    """
    topology = fnss.line_topology(n)
    receivers = [0]
    routers = range(1, n - 1)
    sources = [n - 1]
    topology.graph['icr_candidates'] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, delay, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #3
0
    def test_p_median_unsorted(self):
        """

        Test topology:

        A ---- C ---- B ----[HIGH DIST] --- E --- D --- F

        Expected facilities: 1, 4
        """
        t = fnss.Topology()
        nx.add_path(t, "ACBEDF")
        fnss.set_weights_constant(t, 1)
        fnss.set_weights_constant(t, 2, [("B", "E")])
        distances = dict(nx.all_pairs_dijkstra_path_length(t, weight='weight'))
        allocation, facilities, cost = algorithms.compute_p_median(
            distances, 2)
        assert {
            "A": "C",
            "B": "C",
            "C": "C",
            "D": "D",
            "E": "D",
            "F": "D",
        } == allocation
        assert set("CD") == facilities
        assert 4 == cost
    def test_p_median(self):
        """
        Test topology:

        A ---- B ---- C ----[HIGH DIST] --- D --- E --- F

        Expected facilities: 1, 4
        """
        t = fnss.Topology()
        nx.add_path(t, "ABCDEF")
        fnss.set_weights_constant(t, 1)
        fnss.set_weights_constant(t, 2, [("C", "D")])
        distances = dict(nx.all_pairs_dijkstra_path_length(t, weight='weight'))
        allocation, facilities, cost = algorithms.compute_p_median(
            distances, 2)
        self.assertDictEqual(
            {
                "A": "B",
                "B": "B",
                "C": "B",
                "D": "E",
                "E": "E",
                "F": "E",
            }, allocation)
        self.assertSetEqual(set("BE"), facilities)
        self.assertEqual(4, cost)
def topology_path(n, delay=1, **kwargs):
    """Return a path topology with a receiver on node `0` and a source at node
    'n-1'
    
    Parameters
    ----------
    n : int (>=3)
        The number of nodes
    delay : float
        The link delay in milliseconds
        
    Returns
    -------
    topology : IcnTopology
        The topology object
    """
    topology = fnss.line_topology(n)
    receivers = [0]    
    routers = range(1, n-1)
    sources = [n-1]
    topology.graph['icr_candidates'] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, delay, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #6
0
def topology_garr2(**kwargs):
    """Return a scenario based on GARR topology.
    Differently from plain GARR, this topology some receivers are appended to
    routers and only a subset of routers which are actually on the path of some
    traffic are selected to become ICN routers. These changes make this
    topology more realistic.
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(
        path.join(TOPOLOGY_RESOURCES_DIR,
                  'Garr201201.graphml')).to_undirected()

    # sources are nodes representing neighbouring AS's
    sources = [0, 2, 3, 5, 13, 16, 23, 24, 25, 27, 51, 52, 54]
    # receivers are internal nodes with degree = 1
    receivers = [
        1, 7, 8, 9, 11, 12, 19, 26, 28, 30, 32, 33, 41, 42, 43, 47, 48, 50, 53,
        57, 60
    ]
    # routers are all remaining nodes --> 27 caches
    routers = [
        n for n in topology.nodes_iter() if n not in receivers + sources
    ]
    artificial_receivers = list(range(1000, 1000 + len(routers)))
    for i in range(len(routers)):
        topology.add_edge(routers[i], artificial_receivers[i])
    receivers += artificial_receivers
    # Caches to nodes with degree > 3 (after adding artificial receivers)
    degree = nx.degree(topology)
    icr_candidates = [n for n in topology.nodes_iter() if degree[n] > 3.5]
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')

    # Deploy stacks
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',
                                     [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #7
0
def topology_fiveNode(**kwargs):
    """Return a scenario based on Five_Node topology.
    
    This functions the similar as the GEANT topology but with only 5 nodes
    All routers are given caches
    Sources are added on initilization in addition to the main network to all
    nodes with 2 connections
     
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 5 nodes
    topology = fnss.parse_topology_zoo(
        path.join(TOPOLOGY_RESOURCES_DIR, 'SixNode.graphml')).to_undirected()
    topology = list(nx.connected_component_subgraphs(topology))[0]
    deg = nx.degree(topology)
    receivers = [v for v in topology.nodes() if deg[v] == 1]  # 8 nodes
    # attach sources to topology
    source_attachments = [v for v in topology.nodes()
                          if deg[v] == 2]  # 13 nodes
    sources = []
    for v in source_attachments:
        u = v + 1000  # node ID of source
        topology.add_edge(v, u)
        sources.append(u)
    routers = [v for v in topology.nodes() if v not in sources + receivers]
    # Put caches in nodes with top betweenness centralities
    betw = nx.betweenness_centrality(topology)
    routers = sorted(routers, key=lambda k: betw[k])
    # Select as ICR candidates all routers
    icr_candidates = routers
    # add stacks to nodes
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',
                                     [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #8
0
def topology_geant2(**kwargs):
    """Return a scenario based on GEANT topology.

    Differently from plain GEANT, this topology some receivers are appended to
    routers and only a subset of routers which are actually on the path of some
    traffic are selected to become ICN routers. These changes make this
    topology more realistic.

    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation

    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 53 nodes
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR,
                                                 'Geant2012.graphml')
                                       ).to_undirected()
    topology = list(nx.connected_component_subgraphs(topology))[0]
    deg = nx.degree(topology)
    receivers = [v for v in topology.nodes() if deg[v] == 1]  # 8 nodes
    # attach sources to topology
    source_attachments = [v for v in topology.nodes() if deg[v] == 2]  # 13 nodes
    sources = []
    for v in source_attachments:
        u = v + 1000  # node ID of source
        topology.add_edge(v, u)
        sources.append(u)
    routers = [v for v in topology.nodes() if v not in sources + receivers]
    # Put caches in nodes with top betweenness centralities
    betw = nx.betweenness_centrality(topology)
    routers = sorted(routers, key=lambda k: betw[k])
    # Select as ICR candidates the top 50% routers for betweenness centrality
    icr_candidates = routers[len(routers) // 2:]
    # add stacks to nodes
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #9
0
def topology_ds2os(**kwargs):
    # pass edge list to create topology (alternatively pass NetworkX object)

    agents = ['agent' + str(id)
              for id in range(1, 7)]  # [agent1, agent2, ..., agent6]

    edges = [
        # main edges between KAs/rooms
        ('agent1', 'agent2'),  # BedroomChildren, BedroomParents
        ('agent2', 'agent6'),  # BedroomParents, Bathroom
        ('agent2', 'agent4'),  # BedroomParents, Kitchen
        # ('agent3', 'agent6'), # Dinningroom, Bathroom
        ('agent4', 'agent5'),  # Kitchen, Garage
        ('agent4', 'agent3'),  # Kitchen, Dinningroom
    ]

    rooms = [
        ['movement1', 'questioningservice1', 'tempin1',
         'lightcontrol1'],  # ka1, BedroomChildren
        ['movement2', 'questioningservice2', 'tempin2',
         'lightcontrol2'],  # ka2, BedroomParents
        [
            'heatingcontrol1', 'doorlock1', 'questioningservice3', 'movement3',
            'tempin3', 'lightcontrol3'
        ],  # ka3, Dinningroom
        ['tempin4', 'lightcontrol4', 'movement4', 'battery3'],  # ka4, Kitchen
        ['tempin5', 'battery1', 'movement5', 'lightcontrol5',
         'battery2'],  # ka5, Garage
        ['tempin6', 'washingmachine1', 'lightcontrol6',
         'movement6'],  # ka6, Bathroom
    ]

    for i, agent in enumerate(agents):
        connectedServices = rooms[i]
        # print(agent, 'is connected to', connectedServices)
        for service in connectedServices:
            edges.append((agent, service))  # e.g. ('agent1', 'movement1')
            if not service.startswith('questioningservice'
                                      ):  # questioningservices only read data
                edges.append(
                    (service, service +
                     '/source'))  # e.g. ('movement1', 'movement1/source')
            edges.append(
                (service, service +
                 '/receiver'))  # e.g. ('movement1', 'movement1/receiver')

    topology = fnss.Topology(data=edges)

    for node in topology.nodes():
        stack = 'source' if node.endswith('source') else (
            'receiver' if node.endswith('receiver') else 'router')
        fnss.add_stack(topology, node, stack)

    topology.graph['icr_candidates'] = set(agents)  # only cache at agents

    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')

    return IcnTopology(topology)
def topology_fiveNode(**kwargs):
    """Return a scenario based on Five_Node topology.
    
    This functions the similar as the GEANT topology but with only 5 nodes
    All routers are given caches
    Sources are added on initilization in addition to the main network to all
    nodes with 2 connections
     
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 5 nodes
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR,
                                                 'SixNode.graphml')
                                       ).to_undirected()
    topology = list(nx.connected_component_subgraphs(topology))[0]
    deg = nx.degree(topology)
    receivers = [v for v in topology.nodes() if deg[v] == 1] # 8 nodes
    # attach sources to topology
    source_attachments = [v for v in topology.nodes() if deg[v] == 2] # 13 nodes
    sources = []
    for v in source_attachments:
        u = v + 1000 # node ID of source
        topology.add_edge(v, u)
        sources.append(u)
    routers = [v for v in topology.nodes() if v not in sources + receivers]
    # Put caches in nodes with top betweenness centralities
    betw = nx.betweenness_centrality(topology)
    routers = sorted(routers, key=lambda k: betw[k])
    # Select as ICR candidates all routers
    icr_candidates = routers 
    # add stacks to nodes
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
def topology_geant2(**kwargs):
    """Return a scenario based on GEANT topology.
    
    Differently from plain GEANT, this topology some receivers are appended to
    routers and only a subset of routers which are actually on the path of some
    traffic are selected to become ICN routers. These changes make this
    topology more realistic.
     
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 53 nodes
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR,
                                                 'Geant2012.graphml')
                                       ).to_undirected()
    topology = list(nx.connected_component_subgraphs(topology))[0]
    deg = nx.degree(topology)
    receivers = [v for v in topology.nodes() if deg[v] == 1] # 8 nodes
    # attach sources to topology
    source_attachments = [v for v in topology.nodes() if deg[v] == 2] # 13 nodes
    sources = []
    for v in source_attachments:
        u = v + 1000 # node ID of source
        topology.add_edge(v, u)
        sources.append(u)
    routers = [v for v in topology.nodes() if v not in sources + receivers]
    # Put caches in nodes with top betweenness centralities
    betw = nx.betweenness_centrality(topology)
    routers = sorted(routers, key=lambda k: betw[k])
    # Select as ICR candidates the top 50% routers for betweenness centrality
    icr_candidates = routers[len(routers)//2:] 
    # add stacks to nodes
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #12
0
 def test_clear_weights(self):
     # create new topology to avoid parameters pollution
     G = fnss.star_topology(12)
     fnss.set_weights_constant(G, 3, None)
     self.assertEqual(G.number_of_edges(),
                      len(nx.get_edge_attributes(G, 'weight')))
     fnss.clear_weights(G)
     self.assertEqual(0, len(nx.get_edge_attributes(G, 'weight')))
예제 #13
0
 def test_clear_weights(self):
     # create new topology to avoid parameters pollution
     G = fnss.star_topology(12)
     fnss.set_weights_constant(G, 3, None)
     self.assertEqual(G.number_of_edges(),
                      len(nx.get_edge_attributes(G, 'weight')))
     fnss.clear_weights(G)
     self.assertEqual(0, len(nx.get_edge_attributes(G, 'weight')))
예제 #14
0
def generate_topo(n):
    topo = nx.powerlaw_cluster_graph(n,2,0.08)
    # topo = fnss.waxman_1_topology(n=50,alpha=0.6,beta=0.3)
    # topo = fnss.fat_tree_topology(n)
    fnss.set_weights_constant(topo,1)
    fnss.set_delays_constant(topo, 1, 'ms')
    fnss.set_capacities_edge_betweenness(topo,[100,500,1000],'Mbps')
    fnss.write_topology(topo,'topo_pl_50.xml')
예제 #15
0
파일: topology.py 프로젝트: Jeswang/icarus
def topology_wide(network_cache=0.05, n_contents=100000, seed=None):
    """
    Return a scenario based on GARR topology
    
    Parameters
    ----------
    network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(
        path.join(TOPOLOGY_RESOURCES_DIR, 'WideJpn.graphml')).to_undirected()
    # sources are nodes representing neighbouring AS's
    sources = [9, 8, 11, 13, 12, 15, 14, 17, 16, 19, 18]
    # receivers are internal nodes with degree = 1
    receivers = [27, 28, 3, 5, 4, 7]
    # caches are all remaining nodes --> 27 caches
    caches = [n for n in topology.nodes() if n not in receivers + sources]
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology,
                                                  range(1, n_contents + 1),
                                                  sources,
                                                  seed=seed)
    for v in sources:
        fnss.add_stack(topology, v, 'source',
                       {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',
                                     [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    cache_placement = uniform_cache_placement(topology,
                                              network_cache * n_contents,
                                              caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    return topology
def topology_garr2(**kwargs):
    """Return a scenario based on GARR topology.
    
    Differently from plain GARR, this topology some receivers are appended to
    routers and only a subset of routers which are actually on the path of some
    traffic are selected to become ICN routers. These changes make this
    topology more realistic. 

    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation

    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR, 'Garr201201.graphml')).to_undirected()
    
    # sources are nodes representing neighbouring AS's
    sources = [0, 2, 3, 5, 13, 16, 23, 24, 25, 27, 51, 52, 54]
    # receivers are internal nodes with degree = 1
    receivers = [1, 7, 8, 9, 11, 12, 19, 26, 28, 30, 32, 33, 41, 42, 43, 47, 48, 50, 53, 57, 60]
    # routers are all remaining nodes --> 27 caches
    routers = [n for n in topology.nodes_iter() if n not in receivers + sources]
    artificial_receivers = list(range(1000, 1000 + len(routers)))
    for i in range(len(routers)):
        topology.add_edge(routers[i], artificial_receivers[i])
    receivers += artificial_receivers
    # Caches to nodes with degree > 3 (after adding artificial receivers)
    degree = nx.degree(topology)
    icr_candidates = [n for n in topology.nodes_iter() if degree[n] > 3.5]
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    
    # Deploy stacks
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',[(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #17
0
def topology_geant(**kwargs):
    """Return a scenario based on GEANT topology

    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation

    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 240 nodes in the main component
    topology = fnss.parse_topology_zoo(
        path.join(TOPOLOGY_RESOURCES_DIR,
                  'Geant2012.graphml')).to_undirected()
    topology = list(nx.connected_component_subgraphs(topology))[0]
    deg = nx.degree(topology)
    receivers = [v for v in topology.nodes() if deg[v] == 1]  # 8 nodes
    icr_candidates = [v for v in topology.nodes() if deg[v] > 2]  # 19 nodes
    # attach sources to topology
    source_attachments = [v for v in topology.nodes()
                          if deg[v] == 2]  # 13 nodes
    sources = []
    for v in source_attachments:
        u = v + 1000  # node ID of source
        topology.add_edge(v, u)
        sources.append(u)
    routers = [v for v in topology.nodes() if v not in sources + receivers]
    # add stacks to nodes
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',
                                     [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #18
0
def topology_garr(network_cache=0.05, n_contents=100000, seed=None):
    """
    Return a scenario based on GARR topology
    
    Parameters
    ----------
    network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR, 'Garr201201.graphml')).to_undirected()
    # sources are nodes representing neighbouring AS's
    sources = [0, 2, 3, 5, 13, 16, 23, 24, 25, 27, 51, 52, 54]
    # receivers are internal nodes with degree = 1
    receivers = [1, 7, 8, 9, 11, 12, 19, 26, 28, 30, 32, 33, 41, 42, 43, 47, 48, 50, 53, 57, 60]
    # caches are all remaining nodes --> 27 caches
    caches = [n for n in topology.nodes() if n not in receivers + sources]
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')

    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology, range(1, n_contents+1),
                                                  sources, seed=seed)
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',[(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    cache_placement = uniform_cache_placement(topology, network_cache*n_contents, caches)  
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    return topology
예제 #19
0
파일: topology.py 프로젝트: Jeswang/icarus
def topology_path(network_cache=0.05, n_contents=100000, n=3, seed=None):
    """
    Return a scenario based on path topology
    
    Parameters
    ----------
    network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 240 nodes in the main component
    topology = fnss.line_topology(n)
    receivers = [0]
    caches = range(1, n - 1)
    sources = [n - 1]
    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology,
                                                  range(1, n_contents + 1),
                                                  sources,
                                                  seed=seed)
    for v in sources:
        fnss.add_stack(topology, v, 'source',
                       {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',
                                     [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    cache_placement = uniform_cache_placement(topology,
                                              network_cache * n_contents,
                                              caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    return topology
예제 #20
0
def topology_garr(**kwargs):
    """Return a scenario based on GARR topology

    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation

    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(
        path.join(TOPOLOGY_RESOURCES_DIR,
                  'Garr201201.graphml')).to_undirected()
    # sources are nodes representing neighbouring AS's
    sources = [0, 2, 3, 5, 13, 16, 23, 24, 25, 27, 51, 52, 54]
    # receivers are internal nodes with degree = 1
    receivers = [
        1, 7, 8, 9, 11, 12, 19, 26, 28, 30, 32, 33, 41, 42, 43, 47, 48, 50, 53,
        57, 60
    ]
    # caches are all remaining nodes --> 27 caches
    routers = [n for n in topology.nodes() if n not in receivers + sources]
    icr_candidates = routers
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')

    # Deploy stacks
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')

    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',
                                     [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #21
0
 def test_p_median_3(self):
     # Test topology:
     #
     # A ---- C ---- B ----[HIGH DIST] --- E --- D --- F
     #
     # Expected facilities: 1, 4
     t = fnss.Topology()
     nx.add_path(t, "ACBEDF")
     fnss.set_weights_constant(t, 1)
     fnss.set_weights_constant(t, 2, [("B", "E")])
     distances = dict(nx.all_pairs_dijkstra_path_length(t, weight='weight'))
     allocation, facilities, cost = algorithms.compute_p_median(
         distances, 3)
     assert cost == 3
예제 #22
0
def parse(topo_path, xml_path, delay, buffer_type):
    topology = fnss.parse_topology_zoo(topo_path)
    topology = topology.to_undirected()
    fnss.set_capacities_edge_betweenness(topology, [200, 500, 1000],
                                         'Mbps')  # TODO: hardcode now
    fnss.set_weights_constant(topology, 1)
    fnss.set_delays_constant(topology, delay, 'ms')
    if buffer_type == 'bdp':
        fnss.set_buffer_sizes_bw_delay_prod(topology, 'packet', 1500)
    elif buffer_type == 'bw':
        fnss.set_buffer_sizes_link_bandwidth(topology, buffer_unit='packet')
    else:
        fnss.set_buffer_sizes_constant(topology, 1500, 'packet')
    fnss.write_topology(topology, xml_path)
예제 #23
0
파일: topology.py 프로젝트: Jeswang/icarus
def topology_four_child_tree(network_cache=0.05, n_contents=100000, seed=None):
    """
    Returns a tree topology
    Parameters
    ----------
    network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    h = 5       # depth of the tree
    topology = fnss.k_ary_tree_topology(4, h)
    topology.add_node(1365, depth=-1)
    topology.add_path([0, 1365])

    receivers = [v for v in topology.nodes_iter()
                 if topology.node[v]['depth'] == h]
    sources = [v for v in topology.nodes_iter()
               if topology.node[v]['depth'] == -1]
    caches = [v for v in topology.nodes_iter()
              if topology.node[v]['depth'] >= 0
              and topology.node[v]['depth'] < h]
    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology, range(1, n_contents+1), sources, seed=seed)
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    cache_placement = uniform_cache_placement(topology, network_cache*n_contents, caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return topology
def topology_geant(**kwargs):
    """Return a scenario based on GEANT topology
    
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 240 nodes in the main component
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR,
                                                 'Geant2012.graphml')
                                       ).to_undirected()
    topology = list(nx.connected_component_subgraphs(topology))[0]
    deg = nx.degree(topology)
    receivers = [v for v in topology.nodes() if deg[v] == 1] # 8 nodes
    icr_candidates = [v for v in topology.nodes() if deg[v] > 2] # 19 nodes
    # attach sources to topology
    source_attachments = [v for v in topology.nodes() if deg[v] == 2] # 13 nodes
    sources = []
    for v in source_attachments:
        u = v + 1000 # node ID of source
        topology.add_edge(v, u)
        sources.append(u)
    routers = [v for v in topology.nodes() if v not in sources + receivers]
    # add stacks to nodes
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #25
0
def topology_tree_HX(k, h, delay=1, **kwargs):
    """Returns a tree topology, with a source at the root, receivers at the
    leafs and caches at all intermediate nodes.

    Parameters
    ----------
    h : int
        The height of the tree
    k : int
        The branching factor of the tree
    delay : float
        The link delay in milliseconds

    Returns
    -------
    topology : IcnTopology
        The topology object
    """

    topology = fnss.k_ary_tree_topology(k, h)
    topology.add_path([0, 40])
    topology.node[40]['depth'] = -1
    receivers = [
        v for v in topology.nodes_iter() if topology.node[v]['depth'] == h
    ]
    sources = [40]
    routers = [
        v for v in topology.nodes_iter()
        if topology.node[v]['depth'] >= 0 and topology.node[v]['depth'] < h
    ]
    topology.graph['icr_candidates'] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, 4, 'ms')
    fnss.set_delays_constant(topology, 8, 'ms', [(0, 1), (0, 2), (0, 3),
                                                 (1, 0), (2, 0), (3, 0)])
    # label links as internal
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #26
0
    def test_p_median_4(self):
        """
        Test topology:

        A ---- C ---- B ----[HIGH DIST] --- E --- D --- F

        Expected facilities: 1, 4
        """
        t = fnss.Topology()
        nx.add_path(t, "ACBEDF")
        fnss.set_weights_constant(t, 1)
        fnss.set_weights_constant(t, 2, [("B", "E")])
        distances = dict(nx.all_pairs_dijkstra_path_length(t, weight='weight'))
        allocation, facilities, cost = algorithms.compute_p_median(distances, 4)
        self.assertEqual(2, cost)
예제 #27
0
    def test_p_median_4(self):
        """
        Test topology:

        A ---- C ---- B ----[HIGH DIST] --- E --- D --- F

        Expected facilities: 1, 4
        """
        t = fnss.Topology()
        t.add_path("ACBEDF")
        fnss.set_weights_constant(t, 1)
        fnss.set_weights_constant(t, 2, [("B", "E")])
        distances = dict(nx.all_pairs_dijkstra_path_length(t, weight='weight'))
        allocation, facilities, cost = algorithms.compute_p_median(distances, 4)
        self.assertEqual(2, cost)
예제 #28
0
def topology_mesh(n, m, delay_int=1, delay_ext=5, **kwargs):
    """Returns a ring topology

    This topology is comprised of a mesh of *n* nodes. Each of these nodes is
    attached to a receiver. In addition *m* router are attached each to a source.
    Therefore, this topology has in fact 2n + m nodes.

    Parameters
    ----------
    n : int
        The number of routers in the ring
    m : int
        The number of sources
    delay_int : float
        The internal link delay in milliseconds
    delay_ext : float
        The external link delay in milliseconds

    Returns
    -------
    topology : IcnTopology
        The topology object
    """
    if m > n:
        raise ValueError("m cannot be greater than n")
    topology = fnss.full_mesh_topology(n)
    routers = range(n)
    receivers = range(n, 2 * n)
    sources = range(2 * n, 2 * n + m)
    internal_links = zip(routers, receivers)
    external_links = zip(routers[:m], sources)
    for u, v in internal_links:
        topology.add_edge(u, v, type='internal')
    for u, v in external_links:
        topology.add_edge(u, v, type='external')
    topology.graph['icr_candidates'] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, delay_int, 'ms', internal_links)
    fnss.set_delays_constant(topology, delay_ext, 'ms', external_links)
    return IcnTopology(topology)
예제 #29
0
    def test_p_median(self):
        """
        Test topology:

        A ---- B ---- C ----[HIGH DIST] --- D --- E --- F

        Expected facilities: 1, 4
        """
        t = fnss.Topology()
        nx.add_path(t, "ABCDEF")
        fnss.set_weights_constant(t, 1)
        fnss.set_weights_constant(t, 2, [("C", "D")])
        distances = dict(nx.all_pairs_dijkstra_path_length(t, weight='weight'))
        allocation, facilities, cost = algorithms.compute_p_median(distances, 2)
        self.assertDictEqual({"A": "B", "B": "B", "C": "B", "D": "E", "E": "E", "F": "E", }, allocation)
        self.assertSetEqual(set("BE"), facilities)
        self.assertEqual(4, cost)
예제 #30
0
def topology_tree_with_uCache(k, h, delay=1, **kwargs):
    """Returns a tree topology, with a source at the root, receivers at the
    leafs and caches at the receivers and routers.

    Parameters
    ----------
    h : int
        The height of the tree
    k : int
        The branching factor of the tree
    delay : float
        The link delay in milliseconds

    Returns
    -------
    topology : IcnTopology
        The topology object
    """
    topology = fnss.k_ary_tree_topology(k, h)
    receivers = [
        v for v in topology.nodes_iter() if topology.node[v]['depth'] == h
    ]
    sources = [
        v for v in topology.nodes_iter() if topology.node[v]['depth'] == 0
    ]
    routers = [
        v for v in topology.nodes_iter()
        if topology.node[v]['depth'] > 0 and topology.node[v]['depth'] < h
    ]

    topology.graph['icr_candidates'] = set(routers)
    topology.graph['uCache_candidates'] = set(receivers)

    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, delay, 'ms')
    # label links as internal
    for u, v in topology.edges_iter():
        topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #31
0
def topology_ring(n, delay_int=1, delay_ext=5, **kwargs):
    """Returns a ring topology

    This topology is comprised of a ring of *n* nodes. Each of these nodes is
    attached to a receiver. In addition one router is attached to a source.
    Therefore, this topology has in fact 2n + 1 nodes.

    It models the case of a metro ring network, with many receivers and one
    only source towards the core network.

    Parameters
    ----------
    n : int
        The number of routers in the ring
    delay_int : float
        The internal link delay in milliseconds
    delay_ext : float
        The external link delay in milliseconds

    Returns
    -------
    topology : IcnTopology
        The topology object
    """
    topology = fnss.ring_topology(n)
    topology.graph['type'] = "TREE"
    routers = range(n)
    receivers = range(n, 2 * n)
    source = 2 * n
    internal_links = zip(routers, receivers)
    external_links = [(routers[0], source)]
    for u, v in internal_links:
        topology.add_edge(u, v, type='internal')
    for u, v in external_links:
        topology.add_edge(u, v, type='external')
    topology.graph['icr_candidates'] = set(routers)
    fnss.add_stack(topology, source, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, delay_int, 'ms', internal_links)
    fnss.set_delays_constant(topology, delay_ext, 'ms', external_links)
    return IcnTopology(topology)
예제 #32
0
def topology_wide(**kwargs):
    """Return a scenario based on GARR topology

    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation

    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(
        path.join(TOPOLOGY_RESOURCES_DIR, 'WideJpn.graphml')).to_undirected()
    # sources are nodes representing neighbouring AS's
    sources = [9, 8, 11, 13, 12, 15, 14, 17, 16, 19, 18]
    # receivers are internal nodes with degree = 1
    receivers = [27, 28, 3, 5, 4, 7]
    # caches are all remaining nodes --> 27 caches
    routers = [n for n in topology.nodes() if n not in receivers + sources]
    # All routers can be upgraded to ICN functionalities
    icr_candidates = routers
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # Deploy stacks
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.adj[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',
                                     [(u, v)])
        else:
            topology.adj[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #33
0
파일: topology.py 프로젝트: Sraq-Zit/icarus
def topology_hierarchy(k, h, delay=1, **kwargs):
    """Returns a tree topology, with a source at the root, receivers at the
    leafs and caches at all intermediate nodes.

    Parameters
    ----------
    h : int
        The height of the tree
    k : int
        The branching factor of the tree
    delay : float
        The link delay in milliseconds

    Returns
    -------
    topology : IcnTopology
        The topology object
    """
    topology = fnss.k_ary_tree_topology(k, h)
    receivers = [v for v in topology.nodes()
                 if topology.node[v]['depth'] == h]
    sources = [v for v in topology.nodes()
               if topology.node[v]['depth'] == 0]
    routers = [v for v in topology.nodes()
              if topology.node[v]['depth'] > 0
              and topology.node[v]['depth'] < h]
    topology.graph['icr_candidates'] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # label links as internal
    for u, v in topology.edges():
        topology.adj[u][v]['type'] = 'external' if u in sources or v in sources else 'internal'
    # for u, v in path_links(routers):
    #     topology.add_edge(u, v, type='internal')

    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, delay, 'ms', [(u, v) for u, v in topology.edges() if u in receivers or v in receivers])
    fnss.set_delays_constant(topology, 10*delay, 'ms', [(u, v) for u, v in topology.edges() if u in routers and v in routers])
    fnss.set_delays_constant(topology, 60*delay, 'ms', [(u, v) for u, v in topology.edges() if u in sources or v in sources])
    return IcnTopology(topology)
def topology_tandem(n=3,nc=0.01, **kwargs):

    
    T = 'TANDEM' # name of the topology
    
    topology = fnss.line_topology(n)
    topology = list(nx.connected_component_subgraphs(topology))[0]

            
    receivers = [0]
    routers = [1, 2]
    #sources = [2]
    
    source_attachment = routers[1];
    source = source_attachment + 1000
    topology.add_edge(source_attachment, source)

    sources = [source]

    topology.graph['icr_candidates'] = set(routers)
    
    fnss.add_stack(topology, source, 'source')

    #for v in sources:
    #    fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'

    C = str(nc)
    fnss.write_topology(topology, path.join(TOPOLOGY_RESOURCES_DIR, topo_prefix + 'T=%s@C=%s' % (T, C)  + '.xml'))

    return IcnTopology(topology)
예제 #35
0
    def my_topology(cls):
        """Return my topology for testing caching strategies
        """
        # Topology sketch
        #            0
        #         /     \
        #        /       \
        #       /         \
        #      1           2
        #    /   \       /  \
        #   3     4     5    6
        #  / \   / \   / \  / \
        # 7   8 9  10 11 1213 14
        #
        k = 2
        h = 3
        delay = 5
        topology = IcnTopology(fnss.k_ary_tree_topology(k, h))
        receivers = [
            v for v in topology.nodes_iter() if topology.node[v]['depth'] == h
        ]
        sources = [
            v for v in topology.nodes_iter() if topology.node[v]['depth'] == 0
        ]
        routers = [
            v for v in topology.nodes_iter()
            if topology.node[v]['depth'] > 0 and topology.node[v]['depth'] < h
        ]
        topology.graph['icr_candidates'] = set(routers)
        for v in receivers:
            fnss.add_stack(topology, v, 'receiver')
        for v in routers:
            fnss.add_stack(topology, v, 'router', {'cache_size': 2})

        contents = (1, 2, 3)
        fnss.add_stack(topology, source, 'source', {'contents': contents})

        # set weights and delays on all links
        fnss.set_weights_constant(topology, 1.0)
        fnss.set_delays_constant(topology, delay, 'ms')
        fnss.set_delays_constant(topology, 20, 'ms', [(0, 1), (0, 2)])
        # label links as internal
        for u, v in topology.edges_iter():
            topology.edge[u][v]['type'] = 'internal'
        return IcnTopology(topology)
예제 #36
0
    def test_p_median_6(self):
        """
        Test topology:

        A ---- C ---- B ----[HIGH DIST] --- E --- D --- F

        Expected facilities: 1, 4
        """
        t = fnss.Topology()
        t.add_path("ACBEDF")
        fnss.set_weights_constant(t, 1)
        fnss.set_weights_constant(t, 2, [("B", "E")])
        distances = nx.all_pairs_dijkstra_path_length(t, weight='weight')
        allocation, facilities, cost = algorithms.compute_p_median(
            distances, 6)
        self.assertDictEqual({i: i for i in "ABCDEF"}, allocation)
        self.assertSetEqual(set("ABCDEF"), facilities)
        self.assertEqual(0, cost)
예제 #37
0
    def test_p_median_6(self):
        """
        Test topology:

        A ---- C ---- B ----[HIGH DIST] --- E --- D --- F

        Expected facilities: 1, 4
        """
        t = fnss.Topology()
        nx.add_path(t, "ACBEDF")
        fnss.set_weights_constant(t, 1)
        fnss.set_weights_constant(t, 2, [("B", "E")])
        distances = dict(nx.all_pairs_dijkstra_path_length(t, weight='weight'))
        allocation, facilities, cost = algorithms.compute_p_median(
            distances, 6)
        assert {i: i for i in "ABCDEF"} == allocation
        assert set("ABCDEF") == facilities
        assert 0 == cost
예제 #38
0
def topology_path(network_cache=0.05, n_contents=100000, n=3, seed=None):
    """
    Return a scenario based on path topology
    
    Parameters
    ----------
    network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 240 nodes in the main component
    topology = fnss.line_topology(n)
    receivers = [0]    
    caches = range(1, n-1)
    sources = [n-1]
    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology, range(1, n_contents+1), sources, seed=seed)
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    cache_placement = uniform_cache_placement(topology, network_cache*n_contents, caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    return topology
def topology_garr(**kwargs):
    """Return a scenario based on GARR topology
    
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR, 'Garr201201.graphml')).to_undirected()
    # sources are nodes representing neighbouring AS's
    sources = [0, 2, 3, 5, 13, 16, 23, 24, 25, 27, 51, 52, 54]
    # receivers are internal nodes with degree = 1
    receivers = [1, 7, 8, 9, 11, 12, 19, 26, 28, 30, 32, 33, 41, 42, 43, 47, 48, 50, 53, 57, 60]
    # caches are all remaining nodes --> 27 caches
    routers = [n for n in topology.nodes() if n not in receivers + sources]
    icr_candidates = routers
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')

    # Deploy stacks
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',[(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #40
0
def topology_wide(**kwargs):
    """Return a scenario based on WIDE topology
    
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR, 'WideJpn.graphml')).to_undirected()
    # sources are nodes representing neighbouring AS's
    sources = [9, 8, 11, 13, 12, 15, 14, 17, 16, 19, 18]
    # receivers are internal nodes with degree = 1
    receivers = [27, 28, 3, 5, 4, 7]
    # caches are all remaining nodes --> 27 caches
    routers = [n for n in topology.nodes() if n not in receivers + sources]
    # All routers can be upgraded to ICN functionalitirs
    icr_candidates = routers
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # Deploy stacks
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms',[(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #41
0
 def test_base_topology_class(self):
     weight = 2
     capacity = 3
     delay = 4
     buffer_size = 5
     topology = fnss.Topology()
     topology.add_path([1, 2, 3])
     fnss.set_weights_constant(topology, weight)
     fnss.set_capacities_constant(topology, capacity)
     fnss.set_delays_constant(topology, delay)
     fnss.set_buffer_sizes_constant(topology, buffer_size)
     weights = topology.weights()
     capacities = topology.capacities()
     delays = topology.delays()
     buffer_sizes = topology.buffers()
     for e in topology.edges_iter():
         self.assertEqual(weight, weights[e])
         self.assertEqual(capacity, capacities[e])
         self.assertEqual(delay, delays[e])
         self.assertEqual(buffer_size, buffer_sizes[e])
예제 #42
0
 def test_base_topology_class(self):
     weight = 2
     capacity = 3
     delay = 4
     buffer_size = 5
     topology = fnss.Topology()
     topology.add_path([1, 2, 3])
     fnss.set_weights_constant(topology, weight)
     fnss.set_capacities_constant(topology, capacity)
     fnss.set_delays_constant(topology, delay)
     fnss.set_buffer_sizes_constant(topology, buffer_size)
     weights = topology.weights()
     capacities = topology.capacities()
     delays = topology.delays()
     buffer_sizes = topology.buffers()
     for e in topology.edges():
         self.assertEqual(weight, weights[e])
         self.assertEqual(capacity, capacities[e])
         self.assertEqual(delay, delays[e])
         self.assertEqual(buffer_size, buffer_sizes[e])
예제 #43
0
def topology_binary_tree(**kwargs):
    """Returns a tree topology
    
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    h = 5       # depth of the tree
    topology = fnss.k_ary_tree_topology(2, h)
    receivers = [v for v in topology.nodes_iter()
                 if topology.node[v]['depth'] == h]
    sources = [v for v in topology.nodes_iter()
               if topology.node[v]['depth'] == 0]
    routers = [v for v in topology.nodes_iter()
              if topology.node[v]['depth'] > 0
              and topology.node[v]['depth'] < h]
    topology.graph['icr_candidates'] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
def topology_tree(k, h, delay=1, **kwargs):
    """Returns a tree topology, with a source at the root, receivers at the 
    leafs and caches at all intermediate nodes.
    
    Parameters
    ----------
    h : height 
        The height of the tree
    k : branching factor
        The branching factor of the tree
    delay : float
        The link delay in milliseconds
        
    Returns
    -------
    topology : IcnTopology
        The topology object
    """
    topology = fnss.k_ary_tree_topology(k, h)
    receivers = [v for v in topology.nodes_iter()
                 if topology.node[v]['depth'] == h]
    sources = [v for v in topology.nodes_iter()
               if topology.node[v]['depth'] == 0]
    routers = [v for v in topology.nodes_iter()
              if topology.node[v]['depth'] > 0
              and topology.node[v]['depth'] < h]
    topology.graph['icr_candidates'] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, delay, 'ms')
    # label links as internal
    for u, v in topology.edges_iter():
        topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #45
0
def topology_tree(k, h, delay=1, **kwargs):
    """Returns a tree topology, with a source at the root, receivers at the
    leafs and caches at all intermediate nodes.

    Parameters
    ----------
    h : int
        The height of the tree
    k : int
        The branching factor of the tree
    delay : float
        The link delay in milliseconds

    Returns
    -------
    topology : IcnTopology
        The topology object
    """
    topology = fnss.k_ary_tree_topology(k, h)
    receivers = [v for v in topology.nodes() if topology.node[v]["depth"] == h]
    sources = [v for v in topology.nodes() if topology.node[v]["depth"] == 0]
    routers = [
        v for v in topology.nodes()
        if topology.node[v]["depth"] > 0 and topology.node[v]["depth"] < h
    ]
    topology.graph["icr_candidates"] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, "source")
    for v in receivers:
        fnss.add_stack(topology, v, "receiver")
    for v in routers:
        fnss.add_stack(topology, v, "router")
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, delay, "ms")
    # label links as internal
    for u, v in topology.edges():
        topology.adj[u][v]["type"] = "internal"
    return IcnTopology(topology)
예제 #46
0
 def test_p_median(self):
     # Test topology:
     #
     # A ---- B ---- C ----[HIGH DIST] --- D --- E --- F
     #
     # Expected facilities: 1, 4
     t = fnss.Topology()
     nx.add_path(t, "ABCDEF")
     fnss.set_weights_constant(t, 1)
     fnss.set_weights_constant(t, 2, [("C", "D")])
     distances = dict(nx.all_pairs_dijkstra_path_length(t, weight='weight'))
     allocation, facilities, cost = algorithms.compute_p_median(
         distances, 2)
     assert allocation == {
         "A": "B",
         "B": "B",
         "C": "B",
         "D": "E",
         "E": "E",
         "F": "E",
     }
     assert facilities == set("BE")
     assert cost == 4
예제 #47
0
def topology_path(n=3, **kwargs):
    """Return a scenario based on path topology
    
    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 240 nodes in the main component
    topology = fnss.line_topology(n)
    receivers = [0]    
    routers = range(1, n-1)
    sources = [n-1]
    topology.graph['icr_candidates'] = set(routers)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #48
0
def topology_tiscali(network_cache=0.05, n_contents=100000, seed=None):
    """
    Return a scenario based on Tiscali topology, parsed from RocketFuel dataset
    
    Parameters
    ----------
    network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 240 nodes in the main component
    topology = fnss.parse_rocketfuel_isp_map(path.join(TOPOLOGY_RESOURCES_DIR,
                                                       '3257.r0.cch')
                                             ).to_undirected()
    topology = nx.connected_component_subgraphs(topology)[0]
    # degree of nodes
    deg = nx.degree(topology)
    # nodes with degree = 1
    onedeg = [v for v in topology.nodes() if deg[v] == 1] # they are 80
    # we select as caches nodes with highest degrees
    # we use as min degree 6 --> 36 nodes
    # If we changed min degrees, that would be the number of caches we would have:
    # Min degree    N caches
    #  2               160
    #  3               102
    #  4                75
    #  5                50
    #  6                36
    #  7                30
    #  8                26
    #  9                19
    # 10                16
    # 11                12
    # 12                11
    # 13                 7
    # 14                 3
    # 15                 3
    # 16                 2
    caches = [v for v in topology.nodes() if deg[v] >= 6] # 36 nodes
    # sources are node with degree 1 whose neighbor has degree at least equal to 5
    # we assume that sources are nodes connected to a hub
    # they are 44
    sources = [v for v in onedeg if deg[list(topology.edge[v].keys())[0]] > 4.5] # they are 
    # receivers are node with degree 1 whose neighbor has degree at most equal to 4
    # we assume that receivers are nodes not well connected to the network
    # they are 36   
    receivers = [v for v in onedeg if deg[list(topology.edge[v].keys())[0]] < 4.5]
    # we set router stacks because some strategies will fail if no stacks
    # are deployed 
    routers = [v for v in topology.nodes() if v not in caches + sources + receivers]

    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology, range(1, n_contents+1),
                                                  sources, seed=seed)
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    for v in routers:
        fnss.add_stack(topology, v, 'router', {})

    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
            
    cache_placement = uniform_cache_placement(topology, network_cache*n_contents, caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    return topology
예제 #49
0
 def test_weights_constant(self):
     fnss.set_weights_constant(self.topo, 2, self.odd_links)
     fnss.set_weights_constant(self.topo, 5, self.even_links)
     self.assertTrue(
         all(self.topo.adj[u][v]['weight'] in [2, 5]
             for (u, v) in self.topo.edges()))
예제 #50
0
"""
import fnss
import networkx as nx

# create a topology with 10 core switches, 20 edge switches and 10 hosts
# per switch (i.e. 200 hosts in total)
topology = fnss.two_tier_topology(n_core=10, n_edge=20, n_hosts=10)

# assign capacities
# let's set links connecting servers to edge switches to 1 Gbps
# and links connecting core and edge switches to 10 Gbps.

# get list of core_edge links and edge_leaf links
link_types = nx.get_edge_attributes(topology, 'type')
core_edge_links = [link for link in link_types
                   if link_types[link] == 'core_edge']
edge_leaf_links = [link for link in link_types
                   if link_types[link] == 'edge_leaf']

# assign capacities
fnss.set_capacities_constant(topology, 1, 'Gbps', edge_leaf_links)
fnss.set_capacities_constant(topology, 10, 'Gbps', core_edge_links)

# assign weight 1 to all links
fnss.set_weights_constant(topology, 1)

# assign delay of 10 nanoseconds to each link
fnss.set_delays_constant(topology, 10, 'ns')

# save topology to a file
fnss.write_topology(topology, 'datacenter_topology.xml')
예제 #51
0
파일: topology.py 프로젝트: Jeswang/icarus
def topology_geant_custom(network_cache=0.05, n_contents=100000, seed=None):
    """
    Return a scenario based on GEANT topology
    
    Parameters
    ----------
    network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR,
                                                 "Geant2012.graphml")
                                       ).to_undirected()
    topology = list(nx.connected_component_subgraphs(topology))[0]
    deg = nx.degree(topology)

    caches = [v for v in topology.nodes()]  # 38 nodes
    cache_catogory = [1,4,2,1,3,3,3,1,4,3,2,1,1,2,1,4,2,3,1,3,3,2,3,4,4,2,3,1,3,1,3,1,3,1,1,3,1,1,4,1]
    count = 0
    for node in caches:
        fnss.add_stack(topology, node, 'receiver', {})
        count += 1

    # attach sources to topology
    source_attachments = [v for v in topology.nodes() if deg[v] == 2]  # 13 nodes
    sources = []
    for v in source_attachments:
        u = v + 1000  # node ID of source
        topology.add_edge(v, u)
        sources.append(u)
    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology, range(1, n_contents+1), sources, seed=seed)
    # add stacks to nodes
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': content_placement[v]})
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    # place caches 
    cache_placement = uniform_cache_placement(topology, network_cache*n_contents, caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    return topology
예제 #52
0
def topology_grid(network_cache=0.35, n_contents=100000, seed=None):
    # This gives you a 2D grid topology 3x2
    topology = fnss.Topology(nx.grid_2d_graph(10,10))
    # If you want a 3D grid topology, use this command instead
    # This create a 4x3x2 3D grid
    # topology = fnss.Topology(nx.grid_graph([4,3,2]))
    # TODO: Here place caches, content sources, receivers.
    # See other topology generators as examples
    topology = nx.connected_component_subgraphs(topology)[0]
    deg = nx.degree(topology)
    nodes = topology.nodes()
    num_sources = 4
    num_receivers = 30
    source_attachments = []
    sources = []
    receivers = []
    caches = []

    chosen_attachments = 0
    chosen_receivers = 0

    # Random pacement of SOURCES
    completed = False
    while (completed == False):
        x = random.choice(nodes)
        if x in source_attachments:
            continue
        else:
            source_attachments.append(x)
            chosen_attachments += 1
        if chosen_attachments == num_attachments:
            completed = True

    for v in source_attachments:
        u = v + 1000 # node ID of source
        topology.add_edge(v, u)
        sources.append(u)

    # Random placement of RECEIVERS
    completed = False
    while (completed == False):
        x = random.choice(nodes)
        if x in source_attachments:
            continue
        else:
            receivers.append(x)
            chosen_receivers += 1
        if chosen_receivers == num_receivers:
            completed = True

    # Placement of RECEIVERS
    caches = [v for v in nodes if v not in receivers]

    # randomly allocate contents to sources
    content_placement = uniform_content_placement(topology, range(1, n_contents+1), sources, seed=seed)

    # add stacks to nodes
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})

    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
                
    # place caches
    cache_placement = uniform_cache_placement(topology, network_cache*n_contents, caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    return topology
def topology_grid(nc=0.35, **kwargs):
    
    T = 'GRID' # name of the topology
    
    topology = fnss.Topology(nx.grid_2d_graph(10,10))

    topology = list(nx.connected_component_subgraphs(topology))[0]
    deg = nx.degree(topology)
    nodes = topology.nodes()

    print "Number of NODES #"
    print len(nodes)

            
    receivers = []
    routers = []
    #sources = [2]
    

    source_attachment = random.choice(nodes)
    source = source_attachment + (1000,1000)
    topology.add_edge(source_attachment, source)
    sources = [source]

    # Random placement of RECEIVERS
    num_receivers = 30
    chosen_receivers = 0
    completed = False
    #print "RECEIVERS"
    while (completed == False):
        x = random.choice(nodes)
        if x == source_attachment:
            continue
        else:
            if x not in receivers:
                receivers.append(x)
                chosen_receivers += 1
            if chosen_receivers == num_receivers:
                completed = True

    # Placement of Routers
    routers = [v for v in nodes if v not in receivers]

    print "Number of CLIENTS #"
    print len(receivers)
    print "Number of ROUTERS #"
    print len(routers)

    topology.graph['icr_candidates'] = set(routers)
    
    fnss.add_stack(topology, source, 'source')

    #for v in sources:
    #    fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')
    
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'

    C = str(nc)
    fnss.write_topology(topology, path.join(TOPOLOGY_RESOURCES_DIR, topo_prefix + 'T=%s@C=%s' % (T, C)  + '.xml'))

    return IcnTopology(topology)
예제 #54
0
파일: hsvn.py 프로젝트: mvguarda1/hsvn
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#Import the libriraies
import fnss
import networkx as nx

#Create SN
#Read the Topology from the BRITE file
topology = fnss.parse_brite("bigSN.brite")

#Set weight to 1
fnss.set_weights_constant(topology, 1)

#Create a Grapth based on the topology read
SN = nx.Graph(topology)

for n in SN.nodes():
    SN.node[n]['sync'] = False
    SN.node[n]['max_cpu'] = 100
    SN.node[n]['cur_cpu'] = 100
    SN.node[n]['idle'] = True

for u, v in SN.edges():
    SN.edge[u][v]['sync'] = False
    SN.edge[u][v]['max_bw'] = 1000
    SN.edge[u][v]['cur_bw'] = 1000

#Create Virtual Network 1
topology = fnss.parse_brite("VN1.brite")

#Set weight to 1
예제 #55
0
def scenario_geant(net_cache=[0.05], n_contents=100000, alpha=[0.6, 0.8, 1.0]):
    """
    Return a scenario based on GARR topology
    
    Parameters
    ----------
    scenario_id : str
        String identifying the scenario (will be in the filename)
    net_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    alpha : float
        List of alpha of Zipf content distribution
    """
    rate = 12.0
    warmup = 9000
    duration = 36000
    
    T = 'GEANT' # name of the topology
    # 240 nodes in the main component
    topology = fnss.parse_topology_zoo(path.join(scenarios_dir, 'resources/Geant2012.graphml')).to_undirected()
    topology = nx.connected_component_subgraphs(topology)[0]
    
    deg = nx.degree(topology)

    receivers = [v for v in topology.nodes() if deg[v] == 1] # 8 nodes
    
    caches = [v for v in topology.nodes() if deg[v] > 2] # 19 nodes
    
    # attach sources to topology
    source_attachments = [v for v in topology.nodes() if deg[v] == 2] # 13 nodes
    sources = []
    for v in source_attachments:
        u = v + 1000 # node ID of source
        topology.add_edge(v, u)
        sources.append(u)
    
    routers = [v for v in topology.nodes() if v not in caches + sources + receivers]
    
    # randomly allocate contents to sources
    contents = dict([(v, []) for v in sources])
    for c in range(1, n_contents + 1):
        s = choice(sources)
        contents[s].append(c)
    
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': contents[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    for v in routers:
        fnss.add_stack(topology, v, 'router', {})

    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, internal_link_delay, 'ms')
    
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, external_link_delay, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
            
            
    for nc in net_cache:
        size = (float(nc)*n_contents)/len(caches) # size of a single cache
        C = str(nc)
        for v in caches:
            fnss.add_stack(topology, v, 'cache', {'size': size})
        fnss.write_topology(topology, path.join(scenarios_dir, topo_prefix + 'T=%s@C=%s' % (T, C)  + '.xml'))
        print('[WROTE TOPOLOGY] T: %s, C: %s' % (T, C))
    
    for a in alpha:
        event_schedule = gen_req_schedule(receivers, rate, warmup, duration, n_contents, a)
        fnss.write_event_schedule(event_schedule, path.join(scenarios_dir, es_prefix + 'T=%s@A=%s' % (T, str(a)) + '.xml'))
        print('[WROTE SCHEDULE] T: %s, Alpha: %s, Events: %d' % (T, str(a), len(event_schedule)))
def topology_tiscali2(**kwargs):
    """Return a scenario based on Tiscali topology, parsed from RocketFuel dataset

    Differently from plain Tiscali, this topology some receivers are appended to
    routers and only a subset of routers which are actually on the path of some
    traffic are selected to become ICN routers. These changes make this
    topology more realistic. 

    Parameters
    ----------
    seed : int, optional
        The seed used for random number generation
        
    Returns
    -------
    topology : fnss.Topology
        The topology object
    """
    # 240 nodes in the main component
    topology = fnss.parse_rocketfuel_isp_map(path.join(TOPOLOGY_RESOURCES_DIR,
                                                       '3257.r0.cch')
                                             ).to_undirected()
    topology = list(nx.connected_component_subgraphs(topology))[0]
    # degree of nodes
    deg = nx.degree(topology)
    # nodes with degree = 1
    onedeg = [v for v in topology.nodes() if deg[v] == 1] # they are 80
    # we select as caches nodes with highest degrees
    # we use as min degree 6 --> 36 nodes
    # If we changed min degrees, that would be the number of caches we would have:
    # Min degree    N caches
    #  2               160
    #  3               102
    #  4                75
    #  5                50
    #  6                36
    #  7                30
    #  8                26
    #  9                19
    # 10                16
    # 11                12
    # 12                11
    # 13                 7
    # 14                 3
    # 15                 3
    # 16                 2
    icr_candidates = [v for v in topology.nodes() if deg[v] >= 6] # 36 nodes
    # Add remove caches to adapt betweenness centrality of caches
    for i in [181, 208, 211, 220, 222, 250, 257]:
        icr_candidates.remove(i)
    icr_candidates.extend([232, 303, 326, 363, 378])
    # sources are node with degree 1 whose neighbor has degree at least equal to 5
    # we assume that sources are nodes connected to a hub
    # they are 44
    sources = [v for v in onedeg if deg[list(topology.edge[v].keys())[0]] > 4.5] # they are 
    # receivers are node with degree 1 whose neighbor has degree at most equal to 4
    # we assume that receivers are nodes not well connected to the network
    # they are 36   
    receivers = [v for v in onedeg if deg[list(topology.edge[v].keys())[0]] < 4.5]
    # we set router stacks because some strategies will fail if no stacks
    # are deployed 
    routers = [v for v in topology.nodes() if v not in sources + receivers]

    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')
    
    # deploy stacks
    topology.graph['icr_candidates'] = set(icr_candidates)
    for v in sources:
        fnss.add_stack(topology, v, 'source')
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver')
    for v in routers:
        fnss.add_stack(topology, v, 'router')

    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    return IcnTopology(topology)
예제 #57
0
def scenario_tiscali(net_cache=[0.05], n_contents=100000, alpha=[0.6, 0.8, 1.0]):
    """
    Return a scenario based on Tiscali topology, parsed from RocketFuel dataset
    
    Parameters
    ----------
    scenario_id : str
        String identifying the scenario (will be in the filename)
    net_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    alpha : float
        List of alpha of Zipf content distribution
    """
    rate = 12.0
    warmup = 9000
    duration = 36000
    
    T = 'TISCALI' # name of the topology
    # 240 nodes in the main component
    topology = fnss.parse_rocketfuel_isp_map(path.join(scenarios_dir, 'resources/3257.r0.cch')).to_undirected()
    topology = nx.connected_component_subgraphs(topology)[0]
    
    deg = nx.degree(topology)
    onedeg = [v for v in topology.nodes() if deg[v] == 1] # they are 80
    
    # we select as caches nodes with highest degrees
    # we use as min degree 6 --> 36 nodes
    # If we changed min degrees, that would be the number of caches we would have:
    # Min degree    N caches
    #  2               160
    #  3               102
    #  4                75
    #  5                50
    #  6                36
    #  7                30
    #  8                26
    #  9                19
    # 10                16
    # 11                12
    # 12                11
    # 13                 7
    # 14                 3
    # 15                 3
    # 16                 2
    caches = [v for v in topology.nodes() if deg[v] >= 6] # 36 nodes
    
    # sources are node with degree 1 whose neighbor has degree at least equal to 5
    # we assume that sources are nodes connected to a hub
    # they are 44
    sources = [v for v in onedeg if deg[list(topology.edge[v].keys())[0]] > 4.5] # they are 

    # receivers are node with degree 1 whose neighbor has degree at most equal to 4
    # we assume that receivers are nodes not well connected to the network
    # they are 36   
    receivers = [v for v in onedeg if deg[list(topology.edge[v].keys())[0]] < 4.5]

    # we set router stacks because some strategies will fail if no stacks
    # are deployed 
    routers = [v for v in topology.nodes() if v not in caches + sources + receivers]

    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, internal_link_delay, 'ms')

    # randomly allocate contents to sources
    contents = dict([(v, []) for v in sources])
    for c in range(1, n_contents + 1):
        s = choice(sources)
        contents[s].append(c)
    
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': contents[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    for v in routers:
        fnss.add_stack(topology, v, 'router', {})

    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, external_link_delay, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
            
            
    for nc in net_cache:
        size = (float(nc)*n_contents)/len(caches) # size of a single cache
        C = str(nc)
        for v in caches:
            fnss.add_stack(topology, v, 'cache', {'size': size})
        fnss.write_topology(topology, path.join(scenarios_dir, topo_prefix + 'T=%s@C=%s' % (T, C)  + '.xml'))
        print('[WROTE TOPOLOGY] T: %s, C: %s' % (T, C))
    
    for a in alpha:
        event_schedule = gen_req_schedule(receivers, rate, warmup, duration, n_contents, a)
        fnss.write_event_schedule(event_schedule, path.join(scenarios_dir, es_prefix + 'T=%s@A=%s' % (T, str(a)) + '.xml'))
        print('[WROTE SCHEDULE] T: %s, Alpha: %s, Events: %d' % (T, str(a), len(event_schedule)))
예제 #58
0
 def test_weights_constant(self):
     fnss.set_weights_constant(self.topo, 2, self.odd_links)
     fnss.set_weights_constant(self.topo, 5, self.even_links)
     self.assertTrue(all(self.topo.edge[u][v]['weight'] in [2, 5]
                         for (u, v) in self.topo.edges_iter()))
예제 #59
0
def scenario_garr(net_cache=[0.01, 0.05], n_contents=100000, alpha=[0.6, 0.8, 1.0]):
    """
    Return a scenario based on GARR topology
    
    Parameters
    ----------
    scenario_id : str
        String identifying the scenario (will be in the filename)
    net_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
    n_contents : int
        Size of content population
    alpha : float
        List of alpha of Zipf content distribution
    """
    rate = 12.0
    warmup = 9000
    duration = 36000
    
    T = 'GARR' # name of the topology
    
    topology = fnss.parse_topology_zoo(path.join(scenarios_dir, 'resources/Garr201201.graphml')).to_undirected()
    # sources are nodes representing neighbouring AS's
    sources = [0, 2, 3, 5, 13, 16, 23, 24, 25, 27, 51, 52, 54]
    # receivers are internal nodes with degree = 1
    receivers = [1, 7, 8, 9, 11, 12, 19, 26, 28, 30, 32, 33, 41, 42, 43, 47, 48, 50, 53, 57, 60]
    # caches are all remaining nodes --> 27 caches
    caches = [n for n in topology.nodes() if n not in receivers + sources]

    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, internal_link_delay, 'ms')

    # randomly allocate contents to sources
    contents = dict([(v, []) for v in sources])
    for c in range(1, n_contents + 1):
        s = choice(sources)
        contents[s].append(c)
    
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': contents[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})
    
    # label links as internal or external
    for u, v in topology.edges():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, external_link_delay, 'ms',[(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'
    for nc in net_cache:
        size = (float(nc)*n_contents)/len(caches) # size of a single cache
        C = str(nc)
        for v in caches:
            fnss.add_stack(topology, v, 'cache', {'size': size})
        fnss.write_topology(topology, path.join(scenarios_dir, topo_prefix + 'T=%s@C=%s' % (T, C)  + '.xml'))
        print('[WROTE TOPOLOGY] T: %s, C: %s' % (T, C))
    for a in alpha:
        event_schedule = gen_req_schedule(receivers, rate, warmup, duration, n_contents, a)
        fnss.write_event_schedule(event_schedule, path.join(scenarios_dir, es_prefix + 'T=%s@A=%s' % (T, str(a)) + '.xml'))
        print('[WROTE SCHEDULE] T: %s, Alpha: %s, Events: %d' % (T, str(a), len(event_schedule)))
예제 #60
0
def topology_single_cache(network_cache=0.05, n_contents=100000, seed=None):
    """
        Return a scenario based on GEANT topology
        
        Parameters
        ----------
        network_cache : float
        Size of network cache (sum of all caches) normalized by size of content
        population
        n_contents : int
        Size of content population
        seed : int, optional
        The seed used for random number generation
        
        Returns
        -------
        topology : fnss.Topology
        The topology object
        """
    # 240 nodes in the main component
    #topology = fnss.parse_topology_zoo(path.join(TOPOLOGY_RESOURCES_DIR,
    #                                             'Geant2012.graphml')
    #                                   ).to_undirected()
    
    numnodes = 2
    topology = fnss.topologies.simplemodels.line_topology(numnodes)
    
    topology = nx.connected_component_subgraphs(topology)[0]
    deg = nx.degree(topology)
    nodes = topology.nodes()
    
    #receivers = [v for v in topology.nodes() if deg[v] == 1] # 8 nodes
    receivers = []
    receivers.append(nodes[0])
    
    #caches = [v for v in topology.nodes() if deg[v] > 2] # 19 nodes
    caches = []
    caches.append(nodes[1])
    
    
    # attach sources to topology
    #source_attachments = [v for v in topology.nodes() if deg[v] == 2] # 13 nodes
    source_attachment = caches[0]
    
    #sources = []
    #for v in source_attachments:
    #    u = v + 1000 # node ID of source
    #    topology.add_edge(v, u)
    #    sources.append(u)
    sources = []
    u = source_attachment + 1000
    sources.append(u)
    topology.add_edge(source_attachment, sources[0])
    
    #routers = [v for v in topology.nodes() if v not in caches + sources + receivers]
    #router = nodes[1]
    
    # randomly allocate contents to sources
    #content_placement = uniform_content_placement(topology, range(1, n_contents+1), sources, seed=seed)
    content_placement = uniform_content_placement(topology, range(1, n_contents+1), sources, seed=seed)
    
    # add stacks to nodes
    for v in sources:
        fnss.add_stack(topology, v, 'source', {'contents': content_placement[v]})
    for v in receivers:
        fnss.add_stack(topology, v, 'receiver', {})

    #fnss.add_stack(topology, source, 'source', {'contents': content_placement[source]})
    #fnss.add_stack(topology, receiver, 'receiver', {})
    #fnss.add_stack(topology, router, 'router', {})
    
    # set weights and delays on all links
    fnss.set_weights_constant(topology, 1.0)
    fnss.set_delays_constant(topology, INTERNAL_LINK_DELAY, 'ms')

    # label links as internal or external
    for u, v in topology.edges_iter():
        if u in sources or v in sources:
            topology.edge[u][v]['type'] = 'external'
            # this prevents sources to be used to route traffic
            fnss.set_weights_constant(topology, 1000.0, [(u, v)])
            fnss.set_delays_constant(topology, EXTERNAL_LINK_DELAY, 'ms', [(u, v)])
        else:
            topology.edge[u][v]['type'] = 'internal'

    #topology.edge[source_attachment][source]['type'] = 'external'
    #fnss.set_weights_constant(topology, 1000.0, [(source_attachment, source)])
    #fnss.set_delays_constant(topology, external_link_delay, 'ms', [(source_attachment, source)])
    #topology.edge[receiver][cache]['type'] = 'internal'
    #topology.edge[router][cache]['type'] = 'internal'
    
    
    # place caches
    #cache_placement = uniform_cache_placement(topology, network_cache*n_contents, caches)
    cache_placement = uniform_cache_placement(topology, network_cache*n_contents, caches)
    for node, size in cache_placement.iteritems():
        fnss.add_stack(topology, node, 'cache', {'size': size})
    return topology