예제 #1
0
파일: fm.py 프로젝트: EdSheeranla/beapp
def plot_peak_iter(fm):
    """Plots a series of plots illustrating the peak search from a flattened spectrum.

    Parameters
    ----------
    fm : FOOOF() object
        FOOOF object, with model fit and data and settings available.
    """

    flatspec = fm._spectrum_flat
    n_gauss = fm._gaussian_params.shape[0]
    ylims = [
        min(flatspec) - 0.1 * np.abs(min(flatspec)),
        max(flatspec) + 0.1 * max(flatspec)
    ]

    for ind in range(n_gauss + 1):

        _, ax = plt.subplots(figsize=(12, 10))

        plot_spectrum(fm.freqs,
                      flatspec,
                      linewidth=2.0,
                      label='Flattened Spectrum',
                      ax=ax)
        plot_spectrum(fm.freqs,
                      [fm.peak_threshold * np.std(flatspec)] * len(fm.freqs),
                      color='orange',
                      linestyle='dashed',
                      label='Relative Threshold',
                      ax=ax)
        plot_spectrum(fm.freqs, [fm.min_peak_amplitude] * len(fm.freqs),
                      color='red',
                      linestyle='dashed',
                      label='Absolute Threshold',
                      ax=ax)

        maxi = np.argmax(flatspec)
        ax.plot(fm.freqs[maxi], flatspec[maxi], '.', markersize=24)

        ax.set_ylim(ylims)
        ax.set_title('Iteration #' + str(ind + 1), fontsize=16)

        if ind < n_gauss:

            gauss = gaussian_function(fm.freqs, *fm._gaussian_params[ind, :])
            plot_spectrum(fm.freqs,
                          gauss,
                          label='Gaussian Fit',
                          linestyle=':',
                          linewidth=2.0,
                          ax=ax)

            flatspec = flatspec - gauss
예제 #2
0
def get_flattened_plots(spectrum, frequencies, number_of_patients, fm, fg,
                        patient_group, brain_region, params_save_path):
    freqs = frequencies
    doge = spectrum
    plt_log = False
    for n in range(0, number_of_patients):
        spectrum = doge[n]
        fm.add_data(freqs, spectrum, [0, 60])
        print(fm._spectrum_flat)
        plot_spectrum(freqs, spectrum, plt_log, label='Flattened Spectrum1')
        fm.fit(freqs, spectrum, [0, 60])
        plot_spectrum(fm.freqs,
                      fm._spectrum_flat,
                      plt_log,
                      label='Flattened Spectrum')
        joiner = [
            params_save_path, patient_group, 'FlatSpecs_', brain_region, '/',
            patient_group, 'FlatSpec_', brain_region
        ]
        to_string = [''.join(joiner), n + 1]
        string_to_name = ''.join(str(e) for e in to_string)
        plt.savefig(string_to_name)
        plt.close(string_to_name)
예제 #3
0
파일: fm.py 프로젝트: EdSheeranla/beapp
def plot_fm(fm,
            plt_log=False,
            save_fig=False,
            file_name='FOOOF_fit',
            file_path='',
            ax=None):
    """Plot the original power spectrum, and full model fit from FOOOF object.

    Parameters
    ----------
    fm : FOOOF() object
        FOOOF object, containing a power spectrum and (optionally) results from fitting.
    plt_log : boolean, optional
        Whether or not to plot the frequency axis in log space. default: False
    save_fig : boolean, optional
        Whether to save out a copy of the plot. default : False
    file_name : str, optional
        Name to give the saved out file.
    file_path : str, optional
        Path to directory in which to save. If not provided, saves to current directory.
    ax : matplotlib.Axes, optional
        Figure axes upon which to plot.
    """

    if not np.all(fm.freqs):
        raise RuntimeError('No data available to plot - can not proceed.')

    if not ax:
        fig, ax = plt.subplots(figsize=(12, 10))

    # Create the plot, adding data as is available
    if np.all(fm.power_spectrum):
        plot_spectrum(fm.freqs,
                      fm.power_spectrum,
                      plt_log,
                      ax,
                      color='k',
                      linewidth=1.25,
                      label='Original Spectrum')
    if np.all(fm.fooofed_spectrum_):
        plot_spectrum(fm.freqs,
                      fm.fooofed_spectrum_,
                      plt_log,
                      ax,
                      color='r',
                      linewidth=3.0,
                      alpha=0.5,
                      label='Full Model Fit')
        plot_spectrum(fm.freqs,
                      fm._bg_fit,
                      plt_log,
                      ax,
                      color='b',
                      linestyle='dashed',
                      linewidth=3.0,
                      alpha=0.5,
                      label='Background Fit')

    # Save out figure, if requested
    if save_fig:
        plt.savefig(os.path.join(file_path, file_name + '.png'))