import time """Stand alone mode""" ray.init() """Cluster mode""" # ray.init(redis_address="192.168.x.x:6379") (x_train, y_train, x_test, y_test) = uci_adult.load_data() start_time = time.time() est_configs = [ ExtraRandomForestConfig(n_jobs=-1), ExtraRandomForestConfig(n_jobs=-1), ExtraRandomForestConfig(n_jobs=-1), ExtraRandomForestConfig(n_jobs=-1), RandomForestConfig(n_jobs=-1), RandomForestConfig(n_jobs=-1), RandomForestConfig(n_jobs=-1), RandomForestConfig(n_jobs=-1) ] auto_cascade = AutoGrowingCascadeLayer(est_configs=est_configs, early_stopping_rounds=4, n_classes=2, distribute=True, seed=0) model = Graph() model.add(auto_cascade) model.summary() model.fit_transform(x_train, y_train, x_test, y_test)
# set_dataset_dir(osp.join(osp.expanduser('~'), 'forestlayer', 'data')) (x_train, y_train, x_train_plus), (x_test, y_test, x_test_plus) = smallnorb.load_data(osp.join(get_dataset_dir(), "NORB")) x_train = x_train[:100] y_train = y_train[:100] x_train_plus = x_train_plus[:100] x_test = x_test[:50] y_test = y_test[:50] x_test_plus = x_test_plus[:50] print('train shape and plus shape', x_train.shape, x_train_plus.shape) print('test shape and plus shape', x_test.shape, x_test_plus.shape) rf1 = ExtraRandomForestConfig(n_folds=3, n_jobs=-1, min_samples_leaf=10, max_features='auto') rf2 = RandomForestConfig(n_folds=3, n_jobs=-1, min_samples_leaf=10) windows = [Window(win_x=24, win_y=24, stride_x=2, stride_y=2, pad_x=0, pad_y=0), Window(34, 34, 2, 2), Window(48, 48, 2, 2)] est_for_windows = [[rf1, rf2], [rf1, rf2], [rf1, rf2]] data_save_dir = osp.join(get_data_save_base(), 'small_norb') model_save_dir = osp.join(get_model_save_base(), 'small_norb') mgs = MultiGrainScanLayer(windows=windows, est_for_windows=est_for_windows, n_class=10,
fl.init() (x_train, y_train, x_test, y_test) = uci_adult.load_data() start_time = time.time() print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print(x_train.shape[1], 'features') est_configs = [ ExtraRandomForestConfig(), ExtraRandomForestConfig(), ExtraRandomForestConfig(), ExtraRandomForestConfig(), RandomForestConfig(), RandomForestConfig(), RandomForestConfig(), RandomForestConfig(), ] agc = AutoGrowingCascadeLayer(est_configs=est_configs, early_stopping_rounds=4, max_layers=0, stop_by_test=True, n_classes=2, data_save_rounds=0, data_save_dir=osp.join(get_data_save_base(), 'uci_adult', 'auto_cascade'), keep_in_mem=False,
x_train = x_train.reshape(60000, -1, 28, 28) x_test = x_test.reshape(10000, -1, 28, 28) # small data for example. x_train = x_train[:600, :, :, :] x_test = x_test[:300, :, :, :] y_train = y_train[:600] y_test = y_test[:300] print(x_train.shape, 'train', x_train.dtype, getmbof(x_train)) print(x_test.shape, 'test', x_test.dtype, getmbof(x_test)) rf1 = ExtraRandomForestConfig(n_jobs=-1, min_samples_leaf=10, max_features="auto") rf2 = RandomForestConfig(n_jobs=-1, min_samples_leaf=10) windows = [ Window(win_x=7, win_y=7, stride_x=2, stride_y=2, pad_x=0, pad_y=0), Window(10, 10, 2, 2), Window(13, 13, 2, 2) ] est_for_windows = [[rf1, rf2], [rf1, rf2], [rf1, rf2]] mgs = MultiGrainScanLayer(windows=windows, est_for_windows=est_for_windows, n_class=10, distribute=True, dis_level=2, keep_in_mem=False)