예제 #1
0
def analyze_mi_tests(prok_tests, euk_tests):
    pass
    prok_q = fdr(concat(prok_tests))
    euk_q = fdr(concat(euk_tests))
    prok_correlated_percentage = count(lambda x:x <= prok_q,(concat(prok_tests)))/float(len(concat(prok_tests)))
    euk_correlated_percentage = count(lambda x:x <= euk_q,(concat(euk_tests)))/float(len(concat(euk_tests)))
    prok_ds = [[j - i for (i, coli), (j,colj) in choose2(list(enumerate(transpose(motif))))]
               for motif in prok_motifs]
    euk_ds = [[j - i for (i, coli), (j,colj) in choose2(list(enumerate(transpose(motif))))]
               for motif in euk_motifs]
    def binom_ci(xs):
        """return width of error bar"""
        bs_means = sorted([mean(bs(xs)) for x in range(1000)])
        mu = mean(xs)
        return (mu - bs_means[25], bs_means[975] - mu)
    prok_cis = [binom_ci([t <= prok_q for t,d in zip(concat(prok_tests), concat(prok_ds)) if d == i])
                for i in trange(1,20)]
    euk_cis = [binom_ci([t <= euk_q for t,d in zip(concat(euk_tests), concat(euk_ds)) if d == i])
                for i in trange(1,20)]
    plt.errorbar(range(1,20),
                 [mean([t <= prok_q for t,d in zip(concat(prok_tests), concat(prok_ds)) if d == i])
                  for i in range(1,20)],yerr=transpose(prok_cis),label="Prokaryotic Motifs",capthick=1)
    plt.errorbar(range(1,20),
                 [mean([t <= euk_q for t,d in zip(concat(euk_tests), concat(euk_ds)) if d == i])
                  for i in range(1,20)],yerr=transpose(euk_cis),label="Eukaryotic Motifs",capthick=1)
    plt.xlabel("Distance (bp)",fontsize="large")
    plt.ylabel("Proportion of Significant Correlations",fontsize="large")
    plt.legend(fontsize='large')
예제 #2
0
def sanity_check_analyze_correlated_digrams(motifs):
    digrams = defaultdict(int)
    adj_digrams = defaultdict(int)
    for motif in motifs:
        for ((i,coli),(j,colj)) in choose2(list(enumerate(transpose((motif))))):
            for bi,bj in transpose((coli,colj)):
                digrams[(bi,bj)] += 1
                if j == i + 1:
                    adj_digrams[(bi,bj)] += 1
    return digrams, adj_digrams
예제 #3
0
def analyze_mi_tests2(tests, motifs, q=None, label=None):
    q = fdr(concat(tests))
    correlated_percentage = count(lambda x:x <= q,(concat(tests)))/float(len(concat(tests)))
    ds = [[j - i for (i, coli), (j,colj) in choose2(list(enumerate(transpose(motif))))]
               for motif in motifs]
    def binom_ci(xs):
        """return width of error bar"""
        bs_means = sorted([mean(bs(xs)) for x in range(1000)])
        mu = mean(xs)
        return (mu - bs_means[25], bs_means[975] - mu)
    tests_by_dist = [[t <= q for t,d in zip(concat(tests), concat(ds)) if d == i] for i in range(1, 20)]
    mean_vals = map(lambda xs:mean(xs) if xs else 0, tests_by_dist)
    cis = map(lambda xs:binom_ci(xs) if xs else (0,0), tests_by_dist)
    plt.errorbar(range(1,20),
                 mean_vals,yerr=transpose(cis),label=label,capthick=1)
    plt.xlabel("Distance (bp)",fontsize="large")
    plt.ylabel("Proportion of Significant Correlations",fontsize="large")
    plt.legend()
예제 #4
0
def analyze_correlation_positions(all_tests, alpha="fdr"):
    if alpha == "fdr":
        alpha = fdr(concat(all_tests))
    print "alpha:",alpha
    ds = []
    d_controls = []
    for tests in all_tests:
        K = len(tests)
        L = find(lambda l:round(choose(l,2))==K, range(50))
        if L is None:
            print K
            raise Exception()
        for k, (i,j) in enumerate(choose2(range(L))):
            if j == i + 1 and tests[k] <= alpha:
                d = i/float(L)
                ds.append(d)
                d_controls.append(random.randrange(L-1)/float(L))
                plt.scatter(d, tests[k])
    return ds, d_controls
예제 #5
0
def motif_mi_distances(motif, trials=1000):
    cols = transpose(motif)
    L = len(cols)
    correlated_distances = [j-i for (i,coli), (j,colj) in choose2(list(enumerate(cols)))
                            if mi_test_cols(coli, colj)]
    return (correlated_distances, L)
예제 #6
0
def motif_mi_dist(motif):
    cols = transpose(motif)
    return [dna_mi(colA, colB) for colA, colB in choose2(cols)]
예제 #7
0
def motif_test_cols(motif):
    cols = transpose(motif)
    return [mi_test_cols(colA, colB, alpha=None) for colA, colB in choose2(cols)]
예제 #8
0
def analyze_correlated_digrams_canonical(prok_tests, euk_tests, filename=None):
    digrams = [(b1,b2) for b1 in "ACGT" for b2 in "ACGT"]
    canonical_digrams = sorted(list(set([min(dg,tuple(wc(dg))) for dg in digrams])))
    prok_q = fdr(concat(prok_tests))
    euk_q = fdr(concat(euk_tests))
    prok_digrams = defaultdict(int)
    prok_corr_digrams = defaultdict(int)
    prok_adj_digrams = defaultdict(int)
    for tests, motif in tqdm(zip(prok_tests, prok_motifs)):
        for test, ((i,coli),(j,colj)) in zip(tests, choose2(list(enumerate(transpose((motif)))))):
            for bi,bj in transpose((coli,colj)):
                rev_comp = tuple(wc((bi,bj)))
                if (bi, bj) > rev_comp:
                    bi, bj = rev_comp
                prok_digrams[(bi,bj)] += 1
                if j == i + 1:
                    prok_adj_digrams[(bi,bj)] += 1
                if test <= prok_q:
                    prok_corr_digrams[(bi,bj)] += 1
    prok_corr_N = float(sum(prok_corr_digrams.values()))
    prok_adj_N = float(sum(prok_adj_digrams.values()))
    prok_N = float(sum(prok_digrams.values()))
    #prok_ps = normalize(prok_digrams.values())
    #prok_adj_ps = normalize(prok_adj_digrams.values())
    #prok_corr_ps = normalize(prok_corr_digrams.values())
    prok_ps = normalize([prok_digrams[dg] for dg in canonical_digrams])
    prok_adj_ps = normalize([prok_adj_digrams[dg] for dg in canonical_digrams])
    prok_corr_ps = normalize([prok_corr_digrams[dg] for dg in canonical_digrams])
    prok_yerr = [1.96*sqrt(1.0/prok_N*p*(1-p)) for p in prok_ps]
    prok_adj_yerr = [1.96*sqrt(1.0/prok_adj_N*p*(1-p)) for p in prok_adj_ps]
    prok_corr_yerr = [1.96*sqrt(1.0/prok_corr_N*p*(1-p)) for p in prok_corr_ps]

    euk_digrams = defaultdict(int)
    euk_corr_digrams = defaultdict(int)
    euk_adj_digrams = defaultdict(int)
    for tests, motif in tqdm(zip(euk_tests, euk_motifs)):
        for test, ((i,coli),(j,colj)) in zip(tests, choose2(list(enumerate(transpose((motif)))))):
            for bi,bj in transpose((coli,colj)):
                rev_comp = tuple(wc((bi,bj)))
                if (bi, bj) > rev_comp:
                    bi, bj = rev_comp
                euk_digrams[(bi,bj)] += 1
                if j == i + 1:
                    euk_adj_digrams[(bi,bj)] += 1
                if test <= euk_q:
                    euk_corr_digrams[(bi,bj)] += 1
    euk_corr_N = float(sum(euk_corr_digrams.values()))
    euk_adj_N = float(sum(euk_adj_digrams.values()))
    euk_N = float(sum(euk_digrams.values()))
    # euk_ps = normalize(euk_digrams.values())
    # euk_adj_ps = normalize(euk_adj_digrams.values())
    # euk_corr_ps = normalize(euk_corr_digrams.values())
    euk_ps = normalize([euk_digrams[dg] for dg in canonical_digrams])
    euk_adj_ps = normalize([euk_adj_digrams[dg] for dg in canonical_digrams])
    euk_corr_ps = normalize([euk_corr_digrams[dg] for dg in canonical_digrams])
    euk_yerr = [1.96*sqrt(1.0/euk_N*p*(1-p)) for p in euk_ps]
    euk_adj_yerr = [1.96*sqrt(1.0/euk_adj_N*p*(1-p)) for p in euk_adj_ps]
    euk_corr_yerr = [1.96*sqrt(1.0/euk_corr_N*p*(1-p)) for p in euk_corr_ps]

    palette = sns.cubehelix_palette(4)
    ax = plt.subplot(211)
    # plt.bar(range(16),normalize(prok_digrams.values()))
    # plt.bar(range(16),normalize(prok_corr_digrams.values()),color='g')
    # plt.bar([x-0.2 for x in range(16)], prok_relative_ratios.values(), color='g', label="Correlated Column-pairs",width=0.2)
    # plt.bar([x for x in range(16)],prok_adj_relative_ratios.values(),color='r',alpha=1,yerr=prok_adj_yerr,label="Adjacent Column-pairs",width=0.2)
    # plt.bar([x+0.2 for x in range(16)],[1]*16,color='b',alpha=1,yerr=(prok_yerr),capsize=10,capstyle='butt',label="All Column-pairs",width=0.2)
    plt.bar([x-0.2 for x in range(len(canonical_digrams))], prok_ps, label="All Column-Pairs",width=0.2,yerr=prok_yerr,color=palette[0])
    plt.bar([x for x in range(len(canonical_digrams))],prok_adj_ps,label="Adj. Column-Pairs",
            width=0.2,yerr=prok_adj_yerr,color=palette[1])
    plt.bar([x+0.2 for x in range(len(canonical_digrams))],prok_corr_ps,alpha=1,
            capstyle='butt',label="Corr. Adj. Column-Pairs",width=0.2,yerr=prok_corr_yerr,color=palette[3])
    #plt.plot([0,16],[1.0/16, 1.0/16],linestyle='--',color=palette[3],label="Equiprobability",linewidth=1)
    ax.set_xticks([x for x in range(len(canonical_digrams))])
    ax.set_xticklabels( ["".join(dg) for dg in canonical_digrams],fontsize='large')
    plt.xlim(-0.5,10.5)
    plt.ylim(0,0.3)
    #plt.xlabel("Dimer",fontsize='large')
    plt.ylabel("Prokaryotic Frequency",fontsize='large')
    #plt.ylim(0,2)
    plt.legend(loc='upper right')
    
    ax2 = plt.subplot(212)
    #plt.plot([0,16],[1.0/16, 1.0/16],linestyle='--',color=palette[3],label="Equiprobability",linewidth=1)
    plt.bar([x-0.2 for x in range(len(canonical_digrams))], euk_ps, label="All Column-Pairs",width=0.2,yerr=euk_yerr,color=palette[0])
    plt.bar([x for x in range(len(canonical_digrams))],euk_adj_ps,label="Adj. Column-Pairs",
            width=0.2,yerr=euk_adj_yerr,color=palette[1])
    plt.bar([x+0.2 for x in range(len(canonical_digrams))],euk_corr_ps,alpha=1,
            capstyle='butt',label="Corr. Adj. Column-Pairs",width=0.2,yerr=euk_corr_yerr,color=palette[3])
    ax2.set_xticks([x for x in range(len(canonical_digrams))])
    ax2.set_xticklabels( ["".join(dg) for dg in canonical_digrams],fontsize='large')
    #plt.xlabel("Dimer",fontsize='large')
    plt.xlim(-0.5,10.5)
    plt.ylim(0,0.2)
    plt.ylabel("Eukaryotic Frequency",fontsize='large')
    #plt.ylim(0,2)
    plt.legend(loc='upper right')
    maybesave(filename)
예제 #9
0
def motif_mi_col_test(motif, trials=1000):
    cols = transpose(motif)
    return sum(mi_test_cols(colA, colB) for colA, colB in choose2(cols))/float(len(choose2(cols)))