def __init__(self, batch_size, resolution): self.resolution = resolution self.V = get_space(resolution) self.dofs = len(self.V.dofmap().dofs()) self.phi = np.loadtxt('data/basis_five_param.txt', delimiter=",") self.batch_size = batch_size self.solver = Fin(self.V)
def __init__(self, resolution=40, out_type="total_avg"): """ INPUTS: """ V = get_space(resolution) dofs = len(V.dofmap().dofs()) self.solver = Fin(V) self.phi = np.loadtxt('data/basis_five_param.txt', delimiter=",") self.phi = self.phi[:, 0:10] self.model = load_parametric_model('relu', Adam, 0.004, 6, 50, 150, 600) self.out_type = out_type if out_type == "total_avg": out_dim = 1 elif out_type == "subfin_avg": out_dim = 5 elif out_type == "rand_pt": out_dim = 1 elif out_type == "rand_pts": out_dim = 5 mm.PyModPiece.__init__(self, [5], [out_dim])
class FOM_forward(mm.PyModPiece): """ Solves the thermal fin steady state problem with a full order model """ def __init__(self, resolution=40, out_type="total_avg"): """ INPUTS: """ V = get_space(resolution) dofs = len(V.dofmap().dofs()) self.solver = Fin(V) self.out_type = out_type if out_type == "total_avg": out_dim = 1 elif out_type == "subfin_avg": out_dim = 5 elif out_type == "rand_pt": out_dim = 1 elif out_type == "rand_pts": out_dim = 5 mm.PyModPiece.__init__(self, [5], [out_dim]) def EvaluateImpl(self, inputs): """ Performs the forward solve and returns observations. """ z = inputs[0] x, y, A, B, C = self.solver.forward_five_param(z) output = self.solver.qoi_operator(x) self.outputs = [output]
def generate(dataset_size, resolution=40): ''' Create a tensorflow dataset where the features are thermal conductivity parameters and the labels are the differences in the quantity of interest between the high fidelity model and the reduced order model (this is the ROM error) Arguments: dataset_size - number of feature-label pairs resolution - finite element mesh resolution for the high fidelity model Returns: dataset - Tensorflow dataset created from tensor slices ''' V = get_space(resolution) dofs = len(V.dofmap().dofs()) # TODO: Improve this by using mass matrix covariance. Bayesian prior may work well too z_s = np.random.uniform(0.1, 1, (dataset_size, dofs)) phi = np.loadtxt('data/basis.txt', delimiter=",") solver = Fin(V) errors = np.zeros((dataset_size, 1)) m = Function(V) for i in range(dataset_size): m.vector().set_local(z_s[i, :]) w, y, A, B, C = solver.forward(m) psi = np.dot(A, phi) A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi) errors[i][0] = y - y_r dataset = tf.data.Dataset.from_tensor_slices((z_s, errors)) return dataset
class DL_ROM_forward(mm.PyModPiece): """ Solves the thermal fin steady state problem with projection based ROM with a given basis and augments QoI prediction with deep learning prediciton. """ def __init__(self, resolution=40, out_type="total_avg"): """ INPUTS: """ V = get_space(resolution) dofs = len(V.dofmap().dofs()) self.solver = Fin(V) self.phi = np.loadtxt('data/basis_five_param.txt', delimiter=",") self.phi = self.phi[:, 0:10] self.model = load_parametric_model('relu', Adam, 0.004, 6, 50, 150, 600) self.out_type = out_type if out_type == "total_avg": out_dim = 1 elif out_type == "subfin_avg": out_dim = 5 elif out_type == "rand_pt": out_dim = 1 elif out_type == "rand_pts": out_dim = 5 mm.PyModPiece.__init__(self, [5], [out_dim]) def EvaluateImpl(self, inputs): """ Performs the forward solve and returns observations. """ z = inputs[0] A_r, B_r, C_r, x_r, y_r = self.solver.r_fwd_no_full_5_param( z, self.phi) e_NN = self.model.predict(z.reshape((1, 5))) if self.out_type == "total_avg": output = np.array([y_r + e_NN[0, 0]]) else: # The QoI operator determines whether we look at subfin averages # or random points on the boundary or domain output = self.solver.reduced_qoi_operator(x_r) + e_NN[0] self.outputs = [output]
class FinInput: ''' A class to create a thermal fin instance with Tensorflow input functions ''' def __init__(self, batch_size, resolution): self.resolution = resolution self.V = get_space(resolution) self.dofs = len(self.V.dofmap().dofs()) self.phi = np.loadtxt('data/basis_five_param.txt', delimiter=",") self.batch_size = batch_size self.solver = Fin(self.V) def train_input_fn(self): params = np.random.uniform(0.1, 1, (self.batch_size, self.dofs)) errors = np.zeros((self.batch_size, 1)) for i in range(self.batch_size): m = Function(self.V) m.vector().set_local(params[i, :]) w, y, A, B, C = self.solver.forward(m) psi = np.dot(A, self.phi) A_r, B_r, C_r, x_r, y_r = self.solver.reduced_forward( A, B, C, psi, self.phi) errors[i][0] = y - y_r return ({ 'x': tf.convert_to_tensor(params) }, tf.convert_to_tensor(errors)) def eval_input_fn(self): params = np.random.uniform(0.1, 1, (self.batch_size, self.dofs)) errors = np.zeros((self.batch_size, 1)) for i in range(self.batch_size): m = Function(self.V) m.vector().set_local(params[i, :]) w, y, A, B, C = self.solver.forward(m) psi = np.dot(A, self.phi) A_r, B_r, C_r, x_r, y_r = self.solver.reduced_forward( A, B, C, psi, self.phi) errors[i][0] = y - y_r return ({ 'x': tf.convert_to_tensor(params) }, tf.convert_to_tensor(errors))
def generate_and_save_dataset(dataset_size, resolution=40): V = get_space(resolution) dofs = len(V.dofmap().dofs()) z_s = np.random.uniform(0.1, 1, (dataset_size, dofs)) phi = np.loadtxt('data/basis.txt', delimiter=",") solver = Fin(V) errors = np.zeros((dataset_size, 1)) m = Function(V) for i in range(dataset_size): m.vector().set_local(z_s[i, :]) w, y, A, B, C = solver.forward(m) psi = np.dot(A, phi) A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi) errors[i][0] = y - y_r np.savetxt('data/z_s_train.txt', z_s, delimiter=",") np.savetxt('data/errors_train.txt', errors, delimiter=",")
def __init__(self, resolution=40, out_type="total_avg"): """ INPUTS: """ V = get_space(resolution) dofs = len(V.dofmap().dofs()) self.solver = Fin(V) self.out_type = out_type if out_type == "total_avg": out_dim = 1 elif out_type == "subfin_avg": out_dim = 5 elif out_type == "rand_pt": out_dim = 1 elif out_type == "rand_pts": out_dim = 5 mm.PyModPiece.__init__(self, [5], [out_dim])
def generate_five_param_np(dataset_size, resolution=40): V = get_space(resolution) z_s = np.random.uniform(0.1, 1, (dataset_size, 5)) phi = np.loadtxt('data/basis_five_param.txt', delimiter=",") phi = phi[:, 0:10] solver = Fin(V) errors = np.zeros((dataset_size, 1)) y_s = np.zeros((dataset_size, 1)) y_r_s = np.zeros((dataset_size, 1)) for i in range(dataset_size): w, y, A, B, C = solver.forward_five_param(z_s[i, :]) y_s[i][0] = y psi = np.dot(A, phi) A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi) y_r_s[i][0] = y_r errors[i][0] = y - y_r return (z_s, errors)
def generate_five_param(dataset_size, resolution=40): V = get_space(resolution) dofs = len(V.dofmap().dofs()) # TODO: Improve this by using mass matrix covariance. Bayesian prior may work well too z_s = np.random.uniform(0.1, 1, (dataset_size, 5)) phi = np.loadtxt('data/basis_five_param.txt', delimiter=",") phi = phi[:, 0:20] solver = Fin(V) errors = np.zeros((dataset_size, 1)) for i in range(dataset_size): w, y, A, B, C = solver.forward_five_param(z_s[i, :]) psi = np.dot(A, phi) A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi) errors[i][0] = y - y_r # np.savetxt('data/z_s_eval.txt', z_s, delimiter=",") # np.savetxt('data/errors_eval.txt', errors, delimiter=",") dataset = tf.data.Dataset.from_tensor_slices((z_s, errors)) return dataset
def gen_five_param_subfin_avg(dataset_size, resolution=40): V = get_space(resolution) z_s = np.random.uniform(0.1, 1, (dataset_size, 5)) phi = np.loadtxt('data/basis_five_param.txt', delimiter=",") phi = phi[:, 0:10] solver = Fin(V) errors = np.zeros((dataset_size, 5)) avgs = np.zeros((dataset_size, 5)) avgs_r = np.zeros((dataset_size, 5)) for i in range(dataset_size): w, y, A, B, C = solver.forward_five_param(z_s[i, :]) avgs[i] = solver.qoi_operator(w) psi = np.dot(A, phi) A_r, B_r, C_r, x_r, y_r = solver.reduced_forward(A, B, C, psi, phi) avgs_r[i] = solver.reduced_qoi_operator(x_r) errors[i] = avgs[i] - avgs_r[i] return (z_s, errors)
# Create a fin geometry geometry = Rectangle(Point(2.5, 0.0), Point(3.5, 4.0)) \ + Rectangle(Point(0.0, 0.75), Point(2.5, 1.0)) \ + Rectangle(Point(0.0, 1.75), Point(2.5, 2.0)) \ + Rectangle(Point(0.0, 2.75), Point(2.5, 3.0)) \ + Rectangle(Point(0.0, 3.75), Point(2.5, 4.0)) \ + Rectangle(Point(3.5, 0.75), Point(6.0, 1.0)) \ + Rectangle(Point(3.5, 1.75), Point(6.0, 2.0)) \ + Rectangle(Point(3.5, 2.75), Point(6.0, 3.0)) \ + Rectangle(Point(3.5, 3.75), Point(6.0, 4.0)) \ mesh = generate_mesh(geometry, 40) V = FunctionSpace(mesh, 'CG', 1) dofs = len(V.dofmap().dofs()) solver = Fin(V) ##########################################################3 # Basis initialization with dummy solves and POD ##########################################################3 samples = 10 Y = np.zeros((samples, dofs)) for i in range(0, samples): k = np.random.uniform(0.1, 1.0, 5) w = solver.forward_five_param(k)[0] Y[i, :] = w.vector()[:] K = np.dot(Y, Y.T) # Initial basis vectors computed using proper orthogonal decomposition e, v = np.linalg.eig(K)
############################################################################### # Driver # ############################################################################### if __name__ == "__main__": #=== Set hyperparameters ===# hyper_p = HyperParameters() #=== Set run options ===# run_options = RunOptions(hyper_p) ##################################### # Form Test Parameters and State # ##################################### V, _ = get_space(40) solver = Fin(V) #=== Load observation indices ===# print('Loading Boundary Indices') df_obs_indices = pd.read_csv(run_options.observation_indices_savefilepath + '.csv') obs_indices = df_obs_indices.to_numpy() #=== Load testing data ===# if os.path.isfile(run_options.parameter_test_savefilepath + '.csv'): print('Loading Test Data') df_parameter_test = pd.read_csv( run_options.parameter_test_savefilepath + '.csv') df_state_obs_test = pd.read_csv( run_options.state_obs_test_savefilepath + '.csv') parameter_test = df_parameter_test.to_numpy()
import sys sys.path.insert(0,'/home/fenics/Installations/MUQ_INSTALL/lib') import pymuqModeling as mm # Needed for Gaussian distribution import pymuqApproximation as ma # Needed for Gaussian processes import pymuqSamplingAlgorithms as ms # Needed for MCMC resolution = 40 r_fwd = ROM_forward(resolution, out_type="subfin_avg") d_fwd = DL_ROM_forward(resolution, out_type="subfin_avg") f_fwd = FOM_forward(resolution, out_type="subfin_avg") #z_true = np.random.uniform(0.1,1, (1,5)) z_true = np.array([[0.41126864, 0.61789679, 0.75873243, 0.96527541, 0.22348076]]) V = get_space(resolution) full_solver = Fin(V) w, y, A, B, C = full_solver.forward_five_param(z_true[0,:]) qoi = full_solver.qoi_operator(w) obsData = qoi def MCMC_sample(fwd): # Define prior logPriorMu = 0.5*np.ones(5) logPriorCov = 0.5*np.eye(5) logPrior = mm.Gaussian(logPriorMu, logPriorCov).AsDensity() # Likelihood noiseVar = 1e-4 noiseCov = noiseVar*np.eye(obsData.size) likelihood = mm.Gaussian(obsData, noiseCov).AsDensity()
# Create a fin geometry geometry = Rectangle(Point(2.5, 0.0), Point(3.5, 4.0)) \ + Rectangle(Point(0.0, 0.75), Point(2.5, 1.0)) \ + Rectangle(Point(0.0, 1.75), Point(2.5, 2.0)) \ + Rectangle(Point(0.0, 2.75), Point(2.5, 3.0)) \ + Rectangle(Point(0.0, 3.75), Point(2.5, 4.0)) \ + Rectangle(Point(3.5, 0.75), Point(6.0, 1.0)) \ + Rectangle(Point(3.5, 1.75), Point(6.0, 2.0)) \ + Rectangle(Point(3.5, 2.75), Point(6.0, 3.0)) \ + Rectangle(Point(3.5, 3.75), Point(6.0, 4.0)) \ mesh = generate_mesh(geometry, 40) V = FunctionSpace(mesh, 'CG', 1) dofs = len(V.dofmap().dofs()) solver = Fin(V) ##########################################################3 # Basis initialization with dummy solves and POD ##########################################################3 samples = 10 Y = np.zeros((samples, dofs)) for i in range(0, samples): if i == 0: m = interpolate( Expression( "0.1 + exp(-(pow(x[0] - 0.5, 2) + pow(x[1], 2)) / 0.01)", degree=2), V) elif i == 1: m = interpolate(Expression("2*x[0] + 0.1", degree=2), V)
# Create a fin geometry geometry = Rectangle(Point(2.5, 0.0), Point(3.5, 4.0)) \ + Rectangle(Point(0.0, 0.75), Point(2.5, 1.0)) \ + Rectangle(Point(0.0, 1.75), Point(2.5, 2.0)) \ + Rectangle(Point(0.0, 2.75), Point(2.5, 3.0)) \ + Rectangle(Point(0.0, 3.75), Point(2.5, 4.0)) \ + Rectangle(Point(3.5, 0.75), Point(6.0, 1.0)) \ + Rectangle(Point(3.5, 1.75), Point(6.0, 2.0)) \ + Rectangle(Point(3.5, 2.75), Point(6.0, 3.0)) \ + Rectangle(Point(3.5, 3.75), Point(6.0, 4.0)) \ mesh = generate_mesh(geometry, 40) V = FunctionSpace(mesh, 'CG', 1) dofs = len(V.dofmap().dofs()) f = Fin(V) basis = np.loadtxt('data/basis.txt', delimiter=",") m = interpolate(Expression("2*x[1] + 1.0", degree=2), V) w, y, A, B, C = f.forward(m, V) p = plot(m, title="Conductivity") plt.colorbar(p) plt.show() p = plot(w, title="Temperature") plt.colorbar(p) plt.show() A_r, B_r, C_r, x_r, y_r = f.reduced_forward(A, B, C, np.dot(A, basis), basis) x_tilde = np.dot(basis, x_r) x_tilde_f = Function(V) x_tilde_f.vector().set_local(x_tilde) p = plot(x_tilde_f, title="Temperature reduced")
+ Rectangle(Point(0.0, 2.75), Point(2.5, 3.0)) \ + Rectangle(Point(0.0, 3.75), Point(2.5, 4.0)) \ + Rectangle(Point(3.5, 0.75), Point(6.0, 1.0)) \ + Rectangle(Point(3.5, 1.75), Point(6.0, 2.0)) \ + Rectangle(Point(3.5, 2.75), Point(6.0, 3.0)) \ + Rectangle(Point(3.5, 3.75), Point(6.0, 4.0)) \ mesh = generate_mesh(geometry, 40) plot(mesh) plt.show() V = FunctionSpace(mesh, 'CG', 1) dofs = len(V.dofmap().dofs()) print("DOFS: {}".format(dofs)) # Pick a more interesting conductivity to see what happens # m = Function(V) # m = interpolate(Expression("2.0*exp(-(pow(x[0] - 0.5, 2) + pow(x[1]-0.5, 2)) / 0.02)", degree=2), V) m = interpolate(Expression("5- x[1]", degree=2), V) solver = Fin(V) w = solver.forward(m)[0] fig = plt.figure() p = plot(m, title="Conductivity") plt.colorbar(p) plt.show() plt.figure() p = plot(w, title="Temperature") plt.colorbar(p) plt.show()
# Create a fin geometry geometry = Rectangle(Point(2.5, 0.0), Point(3.5, 4.0)) \ + Rectangle(Point(0.0, 0.75), Point(2.5, 1.0)) \ + Rectangle(Point(0.0, 1.75), Point(2.5, 2.0)) \ + Rectangle(Point(0.0, 2.75), Point(2.5, 3.0)) \ + Rectangle(Point(0.0, 3.75), Point(2.5, 4.0)) \ + Rectangle(Point(3.5, 0.75), Point(6.0, 1.0)) \ + Rectangle(Point(3.5, 1.75), Point(6.0, 2.0)) \ + Rectangle(Point(3.5, 2.75), Point(6.0, 3.0)) \ + Rectangle(Point(3.5, 3.75), Point(6.0, 4.0)) \ mesh = generate_mesh(geometry, 40) V = FunctionSpace(mesh, 'CG', 1) dofs = len(V.dofmap().dofs()) f = Fin(V) basis = np.loadtxt('../data/basis_five_param.txt', delimiter=",") basis = basis[:, 0:10] k_s = np.random.uniform(0.1, 1.0, 5) w, y, A, B, C = f.forward_five_param(k_s) m = f.five_param_to_function(k_s) p = plot(m, title="Conductivity") plt.colorbar(p) plt.show() p = plot(w, title="Temperature") plt.colorbar(p) plt.show() A_r, B_r, C_r, x_r, y_r = f.reduced_forward(A, B, C, np.dot(A, basis), basis) x_tilde = np.dot(basis, x_r) x_tilde_f = Function(V)