def add(imageName, ownerID, parameterByName): """ Add an image to a database """ # Show feedback print 'Registering image: ' + imageName # Check whether the image has already been registered image = meta.Session.query(model.Image).filter_by(name=imageName).first() # If the image does not exist, if not image: # Register the image in the database image = model.Image(imageName, ownerID) meta.Session.add(image) # Prepare path basePath = parameterByName.get('path', '') # Load multispectral image multispectralImagePath = store.fillPath(basePath, parameterByName['multispectral image']) multispectralImage = image_store.load(multispectralImagePath) multispectralSpatialReference = multispectralImage.getSpatialReference() # Load panchromatic image panchromaticImagePath = store.fillPath(basePath, parameterByName['panchromatic image']) panchromaticImage = image_store.load(panchromaticImagePath) panchromaticSpatialReference = panchromaticImage.getSpatialReference() # Validate spatialReference = store.validateSame([multispectralSpatialReference, panchromaticSpatialReference], 'Spatial references do not match: %s' % imageName) # Update image image.multispectral_path = multispectralImagePath image.panchromatic_path = panchromaticImagePath image.spatial_reference = spatialReference image.is_complete = True meta.Session.commit()
def step(taskName, parameterByName, folderStore, options): # Get parameters classifierName = parameterByName['classifier name'] classifierPath = folderStore.getClassifierPath(classifierName) classifierInformation = folderStore.getClassifierInformation(classifierName) windowLengthInMeters = classifierInformation.getWindowLengthInMeters() scanRatio = parameterByName['scan ratio'] regionName = parameterByName['region name'] regionPath = folderStore.getRegionPath(regionName) regionInformation = folderStore.getRegionInformation(regionName) regionDataset = regionInformation.getRegionDataset() # Prepare imageName = regionInformation.getImageName() imagePath = folderStore.getImagePath(imageName) imageInformation = folderStore.getImageInformation(imageName) multispectralImagePath = imageInformation.getMultispectralImagePath() multispectralImage = image_store.load(multispectralImagePath) panchromaticImagePath = imageInformation.getPanchromaticImagePath() positiveLocationPath = imageInformation.getPositiveLocationPath() regionFrames = regionDataset.getRegionFrames() # Record targetProbabilityPath = folderStore.fillProbabilityPath(taskName) probabilityInformation = { 'classifier': { 'name': classifierName, 'path': classifierPath, }, 'parameters': { 'window length in meters': windowLengthInMeters, 'scan ratio': scanRatio, }, 'probability': { 'region name': regionName, 'region path': regionPath, 'image name': imageName, 'image path': imagePath, }, } store.saveInformation(targetProbabilityPath, probabilityInformation) # If this is not a test, if not options.is_test: # Scan info = classifier.scan(targetProbabilityPath, classifierPath, multispectralImagePath, panchromaticImagePath, scanRatio, regionFrames) # Save print 'Saving probability matrix as a shapefile...' probability_store.saveShapefile(targetProbabilityPath, targetProbabilityPath, image_store.load(multispectralImagePath), windowLengthInMeters) # Evaluate print 'Evaluating windows...' windowPerformance, wrongPixelCenters, actualPixelPointMachine = evaluation_process.evaluateWindows(targetProbabilityPath, positiveLocationPath, multispectralImagePath, windowLengthInMeters) probabilityInformation['performance'] = windowPerformance probabilityInformation['performance'].update(info) else: wrongPixelCenters = [] windowPixelWidth, windowPixelHeight = multispectralImage.convertGeoDimensionsToPixelDimensions(windowLengthInMeters, windowLengthInMeters) actualPixelPointMachine = point_process.PointMachine([], 'INTEGER', windowPixelWidth, windowPixelHeight) # Update store.saveInformation(targetProbabilityPath, probabilityInformation) # Build patch patch_process.buildPatchFromScan(wrongPixelCenters, folderStore, taskName, targetProbabilityPath, multispectralImagePath, panchromaticImagePath, actualPixelPointMachine, classifierInformation, options.is_test)
def defineRegions(targetRegionPath, multispectralImagePath, panchromaticImagePath, parameterByName, options=None): # Load targetTestRegionPath = targetRegionPath + '-test' multispectralImage = image_store.load(str(multispectralImagePath)) panchromaticImage = image_store.load(str(panchromaticImagePath)) regionPath = parameterByName.get('region path') multispectralRegionFrames = parameterByName.get('multispectral region frames') windowLengthInMeters = parameterByName.get('window length in meters') regionLengthInWindows = parameterByName.get('region length in windows') testFractionPerRegion = parameterByName['test fraction per region'] coverageFraction = parameterByName.get('coverage fraction', 1) coverageFrequency = int(1 / coverageFraction) coverageOffset = parameterByName.get('coverage offset', 0) # If regionPath is defined, use it if regionPath: regionGenerator = (x for x in region_store.loadShapefile(regionPath, multispectralImage)) # If multispectralRegionFrames are defined, use them elif multispectralRegionFrames: regionGenerator = (x for x in multispectralRegionFrames) # Otherwise, prepare regionGenerator else: regionGenerator = region_store.makeRegionGenerator(multispectralImage, panchromaticImage, regionLengthInWindows, windowLengthInMeters) # Save regions regionDataset = region_store.create(targetRegionPath) testRegionDataset = region_store.create(targetTestRegionPath) if options and not options.is_test: for regionIndex, regionWindow in itertools.izip(itertools.count(1), regionGenerator): if (regionIndex + coverageOffset) % coverageFrequency == 0: regionDataset.addRegion(regionWindow) regionFrame = region_store.getMultispectralPixelFrame(regionWindow) testRegionDataset.addFrame(region_process.placeTestRegion(regionFrame, testFractionPerRegion)) # Save as shapefiles regionDataset.saveShapefile(targetRegionPath, multispectralImage) testRegionDataset.saveShapefile(targetTestRegionPath, multispectralImage) # Prepare information information = { 'parameters': { 'multispectral image path': multispectralImagePath, 'panchromatic image path': panchromaticImagePath, 'test fraction per region': testFractionPerRegion, 'window length in meters': windowLengthInMeters, }, 'regions': { 'path': regionDataset.getPath(), 'count': regionDataset.count(), }, 'test regions': { 'path': testRegionDataset.getPath(), 'count': testRegionDataset.count(), }, } if regionPath: information['parameters'].update({ 'region path': regionPath, }) elif multispectralRegionFrames: information['parameters'].update({ 'multispectral region frames': store.stringifyNestedList(multispectralRegionFrames), }) else: information['parameters'].update({ 'region length in windows': regionLengthInWindows, 'coverage fraction': coverageFraction, 'coverage offset': coverageOffset, }) # Save information store.saveInformation(targetRegionPath, information)
def step(taskName, parameterByName, folderStore, options): # Get parameters imageName = parameterByName['image name'] imagePath = folderStore.getImagePath(imageName) imageInformation = folderStore.getImageInformation(imageName) multispectralImagePath = imageInformation.getMultispectralImagePath() multispectralImage = image_store.load(multispectralImagePath) scanRatio = float(parameterByName['scan ratio']) classifierName = parameterByName['classifier name'] classifierPath = folderStore.getClassifierPath(classifierName) classifierInformation = folderStore.getClassifierInformation(classifierName) windowLengthInMeters = classifierInformation.getWindowLengthInMeters() panchromaticImagePath = imageInformation.getPanchromaticImagePath() positiveLocationPath = imageInformation.getPositiveLocationPath() coverageFraction = parameterByName.get('coverage fraction', 1) # Record targetProbabilityPath = folderStore.fillProbabilityPath(taskName) regionPath = targetProbabilityPath + '_region' probabilityInformation = { 'classifier': { 'name': classifierName, 'path': classifierPath, }, 'parameters': { 'window length in meters': windowLengthInMeters, 'scan ratio': scanRatio, 'coverage fraction': coverageFraction, }, 'probability': { 'region path': regionPath, 'image name': imageName, 'image path': imagePath, }, } # Run store.saveInformation(targetProbabilityPath, probabilityInformation) if not options.is_test: # Frame xMax = multispectralImage.width yMax = multispectralImage.height xMargin = int(xMax * (1 - coverageFraction) / 2) yMargin = int(yMax * (1 - coverageFraction) / 2) regionFrames = [(xMargin, yMargin, xMax - xMargin, yMax - yMargin)] regionDataset = region_store.save(regionPath, regionFrames) regionDataset.saveShapefile(regionPath, multispectralImage) # Scan info = classifier.scan(targetProbabilityPath, classifierPath, multispectralImagePath, panchromaticImagePath, scanRatio, regionFrames) # Save print 'Saving probability matrix as a shapefile...' probability_store.saveShapefile(targetProbabilityPath, targetProbabilityPath, multispectralImage, windowLengthInMeters) # Evaluate windows windowPerformance, wrongPixelCenters, actualPixelPointMachine = evaluation_process.evaluateWindows(targetProbabilityPath, positiveLocationPath, multispectralImagePath, windowLengthInMeters) probabilityInformation['performance'] = windowPerformance probabilityInformation['performance'].update(info) else: wrongPixelCenters = [] windowPixelWidth, windowPixelHeight = multispectralImage.convertGeoDimensionsToPixelDimensions(windowLengthInMeters, windowLengthInMeters) actualPixelPointMachine = point_process.PointMachine([], 'INTEGER', windowPixelWidth, windowPixelHeight) # Update store.saveInformation(targetProbabilityPath, probabilityInformation) # Save patch patch_process.buildPatchFromScan(wrongPixelCenters, folderStore, taskName, targetProbabilityPath, multispectralImagePath, panchromaticImagePath, actualPixelPointMachine, classifierInformation, options.is_test)
def sampleWindows(targetWindowPath, region, location, parameterByName, options=None): # Get parameters exampleCountPerRegion = parameterByName['example count per region'] multispectralPixelShiftValue = parameterByName['multispectral pixel shift value'] shiftCount = parameterByName['shift count'] # Prepare regionFrames regionSet = region.getDataset() # regionDataset = region_store.load(region.path) regionFrames = regionDataset.getRegionFrames() regionFrameCount = len(regionFrames) # Prepare counts testRegionSet = region.getTestDataset() # testRegionDataset = region_store.load(regionInformation.getTestRegionPath()) testFractionPerRegion = regionInformation.getTestFractionPerRegion() # Load imageDataset imagePath = folderStore.getImagePath(regionInformation.getImageName()) imageInformation = image_store.Information(imagePath) multispectralImage = image_store.load(imageInformation.getMultispectralImagePath()) panchromaticImage = image_store.load(imageInformation.getPanchromaticImagePath()) # Load locations positiveGeoLocations, spatialReference = point_store.load(imageInformation.getPositiveLocationPath()) # Convert windowLengthInMeters = regionInformation.getWindowLengthInMeters() windowPixelDimensions = multispectralImage.convertGeoDimensionsToPixelDimensions(windowLengthInMeters, windowLengthInMeters) positivePixels = multispectralImage.convertGeoLocationsToPixelLocations(positiveGeoLocations) # Place examples exampleMachine = region_process.ExampleMachine(positivePixels, exampleCountPerRegion, testFractionPerRegion, testRegionDataset, windowPixelDimensions, multispectralPixelShiftValue, shiftCount) examplePacks = [] if options and not options.is_test: print 'Placing examples in %s regions for "%s"...' % (regionFrameCount, taskName) for regionFrame in regionFrames: examplePacks.append(exampleMachine.placeInFrame(regionFrame)) exampleCount = len(examplePacks) if exampleCount % 10 == 0: view.printPercentUpdate(exampleCount, regionFrameCount) view.printPercentFinal(regionFrameCount) exampleInformation = {} trainingPaths = [] testPaths = [] # Set targetWindowFolderPath = os.path.dirname(targetWindowPath) if options and not options.is_test: # For each exampleName, for exampleName in examplePacks[0].keys(): # Convert examplePixelLocations = sum((x[exampleName] for x in examplePacks), []) exampleGeoLocations = multispectralImage.convertPixelLocationsToGeoLocations(examplePixelLocations) examplePath = os.path.join(targetWindowFolderPath, exampleName) exampleLabel = 1 if 'positive' in exampleName else 0 # Save point_store.save(examplePath, exampleGeoLocations, spatialReference) exampleInformation[exampleName + ' count'] = len(examplePixelLocations) # Extract print 'Extracting %s windows for %s...' % (len(examplePixelLocations), exampleName) window_process.extract(examplePath, exampleGeoLocations, exampleLabel, windowLengthInMeters, multispectralImage, panchromaticImage) (testPaths if 'test' in exampleName else trainingPaths).append(examplePath) # Record information = { 'windows': { 'window length in meters': windowLengthInMeters, 'spatial reference': spatialReference, }, 'regions': { 'name': regionName, 'path': regionPath, 'count': regionFrameCount, }, 'examples': exampleInformation, } # Combine if options and not options.is_test: information['training set'] = sample_process.combineDatasets(sample_process.makeTrainingPath(targetWindowFolderPath), trainingPaths).getStatistics() information['test set'] = sample_process.combineDatasets(sample_process.makeTestPath(targetWindowFolderPath), testPaths).getStatistics() # Save information store.saveInformation(targetWindowPath, information)