def objective(basic_grid, contours_map, delta_x, delta_y, angle, scale, shear): print 'args: ' + str(delta_x) + ' ' + str(delta_y) + ' ' + str( angle) + ' ' + str(scale) transformed_grid = get_transformed_grid(basic_grid, delta_x, delta_y, angle, scale, shear) gaussians = np.full((np.size(contours_map, 0), np.size(contours_map, 1)), fill_value=0, dtype=np.float64) for x, y in transformed_grid: gaussian_sigma = 70 * scale # TODO: rethink the "* scale" if x < 0 or y < 0: continue gaussian = get_gaussian_on_image(x, y, gaussian_sigma, contours_map.shape[1], contours_map.shape[0]) gaussians = np.add(gaussians, gaussian) viz_utils.show_image('gaussians', gaussians) return np.sum(np.multiply(contours_map, gaussians))
import cv2 from framework import viz_utils import computer_vision.typical_image_alignment as align if __name__ == '__main__': import content.data_pointers.lavi_april_18.dji as dji_data obstacle = dji_data.snapshots_80_meters['15-17-1'] clear = dji_data.snapshots_80_meters['15-10-1'] img_obstacle = cv2.imread(obstacle.path) img_clear = cv2.imread(clear.path) img_obstacle_reg, h = align.orb_based_registration(img_obstacle, img_clear) # viz_utils.show_image('imreg', img_obstacle_reg) # img_diff = img_obstacle_reg - img_clear img_gray_diff = cv2.subtract( cv2.cvtColor(img_obstacle_reg, cv2.COLOR_BGR2GRAY), cv2.cvtColor(img_clear, cv2.COLOR_BGR2GRAY)) viz_utils.show_image('imreg_diff', img_gray_diff) # img_diff_denoised = cv2.fastNlMeansDenoising(img_gray_diff, None, 10,10,7) # viz_utils.show_image('imreg_denoise', img_diff_denoised) # thresh = cv2.adaptiveThreshold(img_gray_diff, 0, adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, thresholdType=cv2.THRESH_BINARY_INV, blockSize=21, C=2) # viz_utils.show_image('imreg_denoise', thresh) se = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15)) out = cv2.morphologyEx(img_gray_diff, cv2.MORPH_CLOSE, se) viz_utils.show_image('imreg_denoise', out)
dji_data.snapshots_80_meters.values() ] viz_mode = True N = 6 if __name__ == '__main__': idx = 0 for image_path in image_paths_list: idx += 1 if idx != 4: continue # Read image image = cv2.imread(image_path) if viz_mode: viz_utils.show_image('image', image) # Crop central ROI cropped_image_size = np.min([image.shape[0], image.shape[1]]) * 0.9 cropped_image, crop_origin, _ = cv_utils.crop_region( image, x_center=image.shape[1] / 2, y_center=image.shape[0] / 2, x_pixels=cropped_image_size, y_pixels=cropped_image_size) if viz_mode: viz_utils.show_image('cropped image', cropped_image) # Estimate orchard orientation orientation = trunks_detection_old_cv.estimate_rows_orientation( cropped_image)
dji.snapshots_80_meters[obstacle_in_3_4_image_key].path) obstacle_in_4_5_image = cv2.imread( dji.snapshots_80_meters[obstacle_in_4_5_image_key].path) obstacle_in_5_6_image = cv2.imread( dji.snapshots_80_meters[obstacle_in_5_6_image_key].path) baseline_gray_image = cv2.cvtColor(baseline_image, cv2.COLOR_BGR2GRAY) obstacle_in_3_4_gray_image = cv2.cvtColor(obstacle_in_3_4_image, cv2.COLOR_BGR2GRAY) obstacle_in_4_5_gray_image = cv2.cvtColor(obstacle_in_4_5_image, cv2.COLOR_BGR2GRAY) obstacle_in_5_6_gray_image = cv2.cvtColor(obstacle_in_5_6_image, cv2.COLOR_BGR2GRAY) if viz_mode: viz_utils.show_image('baseline', baseline_gray_image) viz_utils.show_image('obstacle_in_3_4', obstacle_in_3_4_gray_image) viz_utils.show_image('obstacle_in_4_5', obstacle_in_4_5_gray_image) viz_utils.show_image('obstacle_in_5_6', obstacle_in_5_6_gray_image) with open(metadata_baseline_path) as f: metadata_baseline = json.load(f) with open(metadata_obstacle_in_3_4_path) as f: metadata_obstacle_in_3_4 = json.load(f) with open(metadata_obstacle_in_4_5_path) as f: metadata_obstacle_in_4_5 = json.load(f) with open(metadata_obstacle_in_5_6_path) as f: metadata_obstacle_in_5_6 = json.load(f) points_baseline = metadata_baseline['results']['1']['pattern_points'] points_obstacle_in_3_4 = metadata_obstacle_in_3_4['results']['1'][
def heuristic_cost_estimate(self, current, goal): (x1, y1) = current (x2, y2) = goal return math.hypot(x2 - x1, y2 - y1) def distance_between(self, n1, n2): return 1 # TODO: change def neighbors(self, node): curr_x, curr_y = node def is_free(x, y): if 0 <= x < self.map_image.shape[1] and 0 <= y < self.map_image.shape[0]: if self.map_image[y, x] == 0: return True return False return [(x, y) for (x, y) in [(curr_x, curr_y - 1), (curr_x, curr_y + 1), (curr_x - 1, curr_y), (curr_x + 1, curr_y)] if is_free(x,y)] if __name__ == '__main__': map_image = cv2.cvtColor(cv2.imread(r'/home/omer/Downloads/dji_15-53-1_map.pgm'), cv2.COLOR_RGB2GRAY) points = cv_utils.sample_pixel_coordinates(map_image, multiple=True) start = points[0] goal = points[1] path_plan = PathPlan(map_image) path = path_plan.astar(start, goal) for point in path: cv2.circle(map_image, point, radius=3, color=255, thickness=-1) viz_utils.show_image('path', map_image) print ('end')
print cv_utils.calculate_image_similarity(image1, warped_image_gt2, method='mse') print('') warped_image_gt1 = cv_utils.warp_image(image=image1, points_in_image=markers1, points_in_baseline=markers2) print cv_utils.calculate_image_similarity(image2, warped_image_gt1, method='ssim') print cv_utils.calculate_image_similarity(image2, warped_image_gt1, method='mse') if viz_mode: viz_utils.show_image('image1', image1) viz_utils.show_image('image2', image2) # TODO: consider playing with the crop_ratio for calculate_image_diff print '\nmine:' warped_image2 = cv_utils.warp_image(image=image2, points_in_image=points2, points_in_baseline=points1) if viz_mode: viz_utils.show_image('warped image', warped_image2) print cv_utils.calculate_image_similarity(image1, warped_image2, method='ssim') print cv_utils.calculate_image_similarity(image1, warped_image2, method='mse')
def task(self, **kwargs): viz_mode = kwargs.get('viz_mode') # Read image image = cv2.imread(self.data_sources) cv2.imwrite(os.path.join(self.repetition_dir, 'image.jpg'), image) if viz_mode: viz_utils.show_image('image', image) # Save contours mask _, contours_mask = segmentation.extract_canopy_contours(image) cv2.imwrite(os.path.join(self.repetition_dir, 'contours_mask.jpg'), contours_mask) # Crop central ROI cropped_image_size = np.min([image.shape[0], image.shape[1]]) * self.params['crop_ratio'] cropped_image, crop_origin, _ = cv_utils.crop_region(image, x_center=image.shape[1] / 2, y_center=image.shape[0] / 2, x_pixels=cropped_image_size, y_pixels=cropped_image_size) cv2.imwrite(os.path.join(self.repetition_dir, 'cropped_image.jpg'), cropped_image) if viz_mode: viz_utils.show_image('cropped image', cropped_image) # Estimate orchard orientation orientation = trunks_detection_old_cv.estimate_rows_orientation(cropped_image) rotation_mat = cv2.getRotationMatrix2D((cropped_image.shape[1] / 2, cropped_image.shape[0] / 2), orientation * (-1), scale=1.0) vertical_rows_image = cv2.warpAffine(cropped_image, rotation_mat, (cropped_image.shape[1], cropped_image.shape[0])) cv2.imwrite(os.path.join(self.repetition_dir, 'vertical_rows.jpg'), vertical_rows_image) if viz_mode: viz_utils.show_image('vertical rows', vertical_rows_image) # Get tree centroids centroids, rotated_centroids, aisle_centers, slices_and_cumsums = trunks_detection_old_cv.find_tree_centroids(cropped_image, correction_angle=orientation * (-1)) vertical_rows_aisle_centers_image = cv_utils.draw_lines_on_image(vertical_rows_image, lines_list=[((center, 0), (center, vertical_rows_image.shape[0])) for center in aisle_centers], color=(0, 0, 255)) cv2.imwrite(os.path.join(self.repetition_dir, 'vertical_rows_aisle_centers.jpg'), vertical_rows_aisle_centers_image) slice_image, cumsum_vector = slices_and_cumsums[len(slices_and_cumsums) / 2] cv2.imwrite(os.path.join(self.repetition_dir, 'vertical_row_slice.jpg'), slice_image) fig = plt.figure() plt.plot(cumsum_vector) plt.savefig(os.path.join(self.repetition_dir, 'cumsum_vector.jpg')) vertical_rows_centroids_image = cv_utils.draw_points_on_image(vertical_rows_image, itertools.chain.from_iterable(rotated_centroids), color=(0, 0, 255)) cv2.imwrite(os.path.join(self.repetition_dir, 'vertical_rows_centroids.jpg'), vertical_rows_centroids_image) if viz_mode: viz_utils.show_image('vertical rows aisle centers', vertical_rows_aisle_centers_image) viz_utils.show_image('vertical rows centroids', vertical_rows_centroids_image) # Estimate grid parameters grid_dim_x, grid_dim_y = trunks_detection_old_cv.estimate_grid_dimensions(rotated_centroids) shear, drift_vectors = trunks_detection_old_cv.estimate_shear(rotated_centroids) drift_vectors_image = cv_utils.draw_lines_on_image(vertical_rows_centroids_image, drift_vectors, color=(255, 255, 0)) cv2.imwrite(os.path.join(self.repetition_dir, 'drift_vectors.jpg'), drift_vectors_image) if viz_mode: viz_utils.show_image('drift vectors', drift_vectors_image) # Get essential grid essential_grid = trunks_detection_old_cv.get_essential_grid(grid_dim_x, grid_dim_y, shear, orientation, n=self.params['grid_size_for_optimization']) essential_grid_shape = np.max(essential_grid, axis=0) - np.min(essential_grid, axis=0) margin = essential_grid_shape * 0.2 essential_grid_shifted = [tuple(elem) for elem in np.array(essential_grid) - np.min(essential_grid, axis=0) + margin / 2] estimated_grid_image = np.full((int(essential_grid_shape[1] + margin[1]), int(essential_grid_shape[0] + margin[0]), 3), 0, dtype=np.uint8) estimated_grid_image = cv_utils.draw_points_on_image(estimated_grid_image, essential_grid_shifted, color=(255, 0, 0)) cv2.imwrite(os.path.join(self.repetition_dir, 'estimated_grid.jpg'), estimated_grid_image) if viz_mode: viz_utils.show_image('estimated grid', estimated_grid_image) # Find translation of the grid positioned_grid, translation, drift_vectors = trunks_detection_old_cv.find_min_mse_position(centroids, essential_grid, cropped_image.shape[1], cropped_image.shape[0]) if positioned_grid is None: raise ExperimentFailure positioned_grid_image = cv_utils.draw_points_on_image(cropped_image, positioned_grid, color=(255, 0, 0), radius=20) positioned_grid_image = cv_utils.draw_points_on_image(positioned_grid_image, centroids, color=(0, 0, 255), radius=10) positioned_grid_image = cv_utils.draw_lines_on_image(positioned_grid_image, drift_vectors, color=(255, 255, 0), thickness=3) cv2.imwrite(os.path.join(self.repetition_dir, 'positioned_grid.jpg'), positioned_grid_image) if viz_mode: viz_utils.show_image('positioned grid', positioned_grid_image) # Estimate sigma as a portion of intra-row distance sigma = grid_dim_y * self.params['initial_sigma_to_dim_y_ratio'] # Get a grid of gaussians grid = trunks_detection_old_cv.get_grid(grid_dim_x, grid_dim_y, translation, orientation, shear, n=self.params['grid_size_for_optimization']) gaussians_filter = trunks_detection_old_cv.get_gaussians_grid_image(grid, sigma, cropped_image.shape[1], cropped_image.shape[0]) cv2.imwrite(os.path.join(self.repetition_dir, 'gaussians_filter.jpg'), 255.0 * gaussians_filter) _, contours_mask = segmentation.extract_canopy_contours(cropped_image) filter_output = np.multiply(gaussians_filter, contours_mask) cv2.imwrite(os.path.join(self.repetition_dir, 'filter_output.jpg'), filter_output) if viz_mode: viz_utils.show_image('gaussians filter', gaussians_filter) viz_utils.show_image('filter output', filter_output) # Optimize the grid optimized_grid, optimized_grid_args = trunks_detection_old_cv.optimize_grid(grid_dim_x, grid_dim_y, translation, orientation, shear, sigma, cropped_image, n=self.params['grid_size_for_optimization']) optimized_grid_dim_x, optimized_grid_dim_y, optimized_translation_x, optimized_translation_y, optimized_orientation, optimized_shear, optimized_sigma = optimized_grid_args self.results[self.repetition_id] = {'optimized_grid_dim_x': optimized_grid_dim_x, 'optimized_grid_dim_y': optimized_grid_dim_y, 'optimized_translation_x': optimized_translation_x, 'optimized_translation_y': optimized_translation_y, 'optimized_orientation': optimized_orientation, 'optimized_shear': optimized_shear, 'optimized_sigma': optimized_sigma} optimized_grid_image = cv_utils.draw_points_on_image(cropped_image, optimized_grid, color=(0, 255, 0)) optimized_grid_image = cv_utils.draw_points_on_image(optimized_grid_image, positioned_grid, color=(255, 0, 0)) cv2.imwrite(os.path.join(self.repetition_dir, 'optimized_grid.jpg'), optimized_grid_image) if viz_mode: viz_utils.show_image('optimized grid', optimized_grid_image) # Extrapolate full grid on the entire image full_grid_np = trunks_detection_old_cv.extrapolate_full_grid(optimized_grid_dim_x, optimized_grid_dim_y, optimized_orientation, optimized_shear, base_grid_origin=np.array(optimized_grid[0]) + np.array(crop_origin), image_width=image.shape[1], image_height=image.shape[0]) full_grid_image = cv_utils.draw_points_on_image(image, [elem for elem in full_grid_np.flatten() if type(elem) is tuple], color=(255, 0, 0)) cv2.imwrite(os.path.join(self.repetition_dir, 'full_grid.jpg'), full_grid_image) if viz_mode: viz_utils.show_image('full grid', full_grid_image) # Match given orchard pattern to grid full_grid_scores_np = trunks_detection_old_cv.get_grid_scores_array(full_grid_np, image, optimized_sigma) orchard_pattern_np = self.params['orchard_pattern'] pattern_origin, pattern_match_score = trunks_detection_old_cv.fit_pattern_on_grid(full_grid_scores_np, orchard_pattern_np) if pattern_origin is None: raise ExperimentFailure self.results[self.repetition_id]['pattern_match_score'] = pattern_match_score trunk_coordinates_np = full_grid_np[pattern_origin[0] : pattern_origin[0] + orchard_pattern_np.shape[0], pattern_origin[1] : pattern_origin[1] + orchard_pattern_np.shape[1]] trunk_points_list = trunk_coordinates_np[orchard_pattern_np != -1] trunk_coordinates_np[orchard_pattern_np == -1] = np.nan semantic_trunks_image = cv_utils.draw_points_on_image(image, trunk_points_list, color=(255, 255, 255)) for i in range(trunk_coordinates_np.shape[0]): for j in range(trunk_coordinates_np.shape[1]): if np.any(np.isnan(trunk_coordinates_np[(i, j)])): continue label_coordinates = (int(trunk_coordinates_np[(i, j)][0]) + 15, int(trunk_coordinates_np[(i, j)][1]) + 15) tree_label = '%d/%s' % (j + 1, chr(65 + (trunk_coordinates_np.shape[0] - 1 - i))) cv2.putText(semantic_trunks_image, tree_label, label_coordinates, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(255, 255, 255), thickness=8, lineType=cv2.LINE_AA) cv2.imwrite(os.path.join(self.repetition_dir, 'semantic_trunks.jpg'), semantic_trunks_image) if viz_mode: viz_utils.show_image('semantic trunks', semantic_trunks_image) # Refine trunk locations refined_trunk_coordinates_np = trunks_detection_old_cv.refine_trunk_locations(image, trunk_coordinates_np, optimized_sigma, optimized_grid_dim_x, optimized_grid_dim_x) refined_trunk_points_list = refined_trunk_coordinates_np[orchard_pattern_np != -1] refined_trunk_coordinates_np[orchard_pattern_np == -1] = np.nan refined_semantic_trunks_image = cv_utils.draw_points_on_image(image, refined_trunk_points_list, color=(255, 255, 255)) semantic_trunks = {} for i in range(refined_trunk_coordinates_np.shape[0]): for j in range(refined_trunk_coordinates_np.shape[1]): if np.any(np.isnan(refined_trunk_coordinates_np[(i, j)])): continue trunk_coordinates = (int(refined_trunk_coordinates_np[(i, j)][0]), int(refined_trunk_coordinates_np[(i, j)][1])) label_coordinates = tuple(np.array(trunk_coordinates) + np.array([15, 15])) semantic_trunks['%d/%s' % (j + 1, chr(65 + (trunk_coordinates_np.shape[0] - 1 - i)))] = trunk_coordinates tree_label = '%d/%s' % (j + 1, chr(65 + (refined_trunk_coordinates_np.shape[0] - 1 - i))) cv2.putText(refined_semantic_trunks_image, tree_label, label_coordinates, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(255, 255, 255), thickness=8, lineType=cv2.LINE_AA) cv2.imwrite(os.path.join(self.repetition_dir, 'refined_semantic_trunks.jpg'), refined_semantic_trunks_image) self.results[self.repetition_id]['semantic_trunks'] = semantic_trunks if viz_mode: viz_utils.show_image('refined semantic trunks', refined_semantic_trunks_image)
import cv2 import json from framework import cv_utils from framework import viz_utils from computer_vision import maps_generation from content.data_pointers.lavi_april_18 import dji if __name__ == '__main__': with open(dji.snapshots_60_meters_markers_locations_json_path) as f: markers_locations = json.load(f) for key, data_descriptor in dji.snapshots_60_meters.items(): image = cv2.imread(data_descriptor.path) map_image = maps_generation.generate_canopies_map(image) map_image = cv2.cvtColor(map_image, cv2.COLOR_GRAY2RGB) map_image = cv_utils.mark_rectangle_on_image(map_image, markers_locations[key]) cv_utils.mark_bounding_box(map_image, markers_locations[key], expand_ratio=0.1) viz_utils.show_image(key, map_image)
x_pixels=2700, y_pixels=1700) contours, contours_mask = canopy_contours.extract_canopy_contours( cropped_image) cv2.drawContours(cropped_image, contours, contourIdx=-1, color=(0, 255, 0), thickness=3) idx += 1 all_contours_points = np.concatenate([contour for contour in contours]) all_contours_points_2d_array = np.empty((len(all_contours_points), 2), dtype=np.float64) for i in range(all_contours_points_2d_array.shape[0]): all_contours_points_2d_array[i, 0] = all_contours_points[i, 0, 0] all_contours_points_2d_array[i, 1] = all_contours_points[i, 0, 1] cropped_image = get_orientation(all_contours_points_2d_array, cropped_image) if show: viz_utils.show_image('image', cropped_image) # viz_utils.show_image('image', image) # TODO: try all the friends below on the data extracted from ORB/SIFT but on the contours mask # cv2.estimateAffine2D() # cv2.estimateAffinePartial2D() # cv2.estimateRigidTransform() # break
def task(self, **kwargs): viz_mode = kwargs.get('viz_mode') map_image_path = self.data_sources['map_image_path'] localization_image_path = self.data_sources['localization_image_path'] roi_center = self.data_sources['roi_center'] map_alignment_points = self.data_sources['map_alignment_points'] localization_alignment_points = self.data_sources[ 'localization_alignment_points'] roi_size = self.params['roi_size'] map_image = cv2.imread(map_image_path) localization_image = cv2.imread(localization_image_path) localization_image, _ = cv_utils.warp_image( localization_image, localization_alignment_points, map_alignment_points) roi_image, _, _ = cv_utils.crop_region(localization_image, roi_center[0], roi_center[1], roi_size, roi_size) matches_image = map_image.copy() cv2.circle(matches_image, roi_center, radius=15, color=(0, 0, 255), thickness=-1) cv2.rectangle( matches_image, (roi_center[0] - roi_size / 2, roi_center[1] - roi_size / 2), (roi_center[0] + roi_size / 2, roi_center[1] + roi_size / 2), (0, 0, 255), thickness=2) for method in [ 'TM_CCOEFF', 'TM_CCOEFF_NORMED', 'TM_CCORR', 'TM_CCORR_NORMED', 'TM_SQDIFF', 'TM_SQDIFF_NORMED' ]: matching_result = cv2.matchTemplate(map_image, roi_image, method=eval('cv2.%s' % method)) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(matching_result) if method in ['TM_SQDIFF', 'TM_SQDIFF_NORMED']: match_top_left = min_loc else: match_top_left = max_loc match_bottom_right = (match_top_left[0] + roi_image.shape[1], match_top_left[1] + roi_image.shape[0]) match_center = (match_top_left[0] + roi_image.shape[1] / 2, match_top_left[1] + roi_image.shape[0] / 2) cv2.rectangle(matches_image, match_top_left, match_bottom_right, (255, 0, 0), thickness=2) cv2.circle(matches_image, match_center, radius=15, color=(255, 0, 0), thickness=-1) cv2.imwrite(os.path.join(self.repetition_dir, 'matches.jpg'), matches_image) if viz_mode: viz_utils.show_image('matches image', matches_image) self.results[self.repetition_id]['error'] = np.sqrt( (roi_center[0] - match_center[0])**2 + (roi_center[1] - match_center[1])**2)
laser_scan.range_max = 300 * 0.0125 laser_scan.ranges = scan_ranges pub.publish(laser_scan) prev_scan_time = curr_scan_time scan_coordinates_list = cv_utils.get_coordinates_list_from_scan_ranges( scan_ranges, vehicle_x, vehicle_y, 0, 2 * np.pi, 0.0125) # TODO: incorrect!!!!!!!! for scan_coordinate in scan_coordinates_list: cv2.circle(frame, (scan_coordinate[0], scan_coordinate[1]), radius=3, color=(0, 0, 255), thickness=-1) if ret == True: viz_utils.show_image('video', frame, wait_key=False) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break te = time.time() if n == 0: mean_ = te - ts else: mean_ = float(mean_) * (n - 1) / n + (te - ts) / n n += 1 print(mean_)
def task(self, **kwargs): viz_mode = kwargs.get('viz_mode') verbose_mode = kwargs.get('verbose') # Read image image = cv2.imread(self.data_sources) cv2.imwrite(os.path.join(self.repetition_dir, 'image.jpg'), image) if viz_mode: viz_utils.show_image('image', image) # Save contours mask _, canopies_mask = segmentation.extract_canopy_contours(image) cv2.imwrite(os.path.join(self.repetition_dir, 'canopies_mask.jpg'), canopies_mask) # Crop central ROI cropped_image_size = int(np.min([image.shape[0], image.shape[1]]) * self.params['crop_ratio']) cropped_image, crop_origin, _ = cv_utils.crop_region(image, x_center=image.shape[1] / 2, y_center=image.shape[0] / 2, x_pixels=cropped_image_size, y_pixels=cropped_image_size) _, cropped_canopies_mask = segmentation.extract_canopy_contours(cropped_image) crop_square_image = image.copy() cv2.rectangle(crop_square_image, crop_origin, (crop_origin[0] + cropped_image_size, crop_origin[1] + cropped_image_size), color=(120, 0, 0), thickness=20) cv2.imwrite(os.path.join(self.repetition_dir, 'crop_square_image.jpg'), crop_square_image) cv2.imwrite(os.path.join(self.repetition_dir, 'cropped_image.jpg'), cropped_image) if viz_mode: viz_utils.show_image('cropped image', cropped_image) # Estimate orchard orientation orientation, angle_to_minima_mean, angle_to_sum_vector = trunks_detection.estimate_rows_orientation(cropped_image) rotation_mat = cv2.getRotationMatrix2D((cropped_image.shape[1] / 2, cropped_image.shape[0] / 2), orientation * (-1), scale=1.0) vertical_rows_image = cv2.warpAffine(cropped_image, rotation_mat, (cropped_image.shape[1], cropped_image.shape[0])) cv2.imwrite(os.path.join(self.repetition_dir, 'vertical_rows.jpg'), vertical_rows_image) if verbose_mode: angle_to_minima_mean_df = pd.DataFrame(angle_to_minima_mean.values(), index=angle_to_minima_mean.keys(), columns=['minima_mean']).sort_index() angle_to_minima_mean_df.to_csv(os.path.join(self.repetition_dir, 'angle_to_minima_mean.csv')) self.results[self.repetition_id]['angle_to_minima_mean_path'] = os.path.join(self.repetition_dir, 'angle_to_minima_mean.csv') max_sum_value = max(map(lambda vector: vector.max(), angle_to_sum_vector.values())) os.mkdir(os.path.join(self.repetition_dir, 'orientation_estimation')) for angle in angle_to_sum_vector: plt.figure() plt.plot(angle_to_sum_vector[angle], color='green') plt.xlabel('x') plt.ylabel('column sums') plt.ylim([(-0.05 * max_sum_value), int(max_sum_value * 1.05)]) plt.ticklabel_format(axis='y', style='sci', scilimits=(0, 4)) plt.autoscale(enable=True, axis='x', tight=True) plt.tight_layout() plt.savefig(os.path.join(self.repetition_dir, 'orientation_estimation', 'sums_vector_%.2f[deg].jpg' % angle)) rotation_mat = cv2.getRotationMatrix2D((cropped_canopies_mask.shape[1] / 2, cropped_canopies_mask.shape[0] / 2), angle, scale=1.0) rotated_canopies_mask = cv2.warpAffine(cropped_canopies_mask, rotation_mat, (cropped_canopies_mask.shape[1], cropped_canopies_mask.shape[0])) cv2.imwrite(os.path.join(self.repetition_dir, 'orientation_estimation', 'rotated_canopies_mask_%.2f[deg]_minima_mean=%.2f.jpg' % (angle, angle_to_minima_mean[angle])), rotated_canopies_mask) if viz_mode: viz_utils.show_image('vertical rows', vertical_rows_image) # Get tree centroids centroids, rotated_centroids, aisle_centers, slices_sum_vectors_and_trees, column_sums_vector = trunks_detection.find_tree_centroids(cropped_image, correction_angle=orientation * (-1)) _, vertical_rows_canopies_mask = segmentation.extract_canopy_contours(vertical_rows_image) vertical_rows_aisle_centers_image = cv_utils.draw_lines_on_image(cv2.cvtColor(vertical_rows_canopies_mask, cv2.COLOR_GRAY2BGR), lines_list=[((center, 0), (center, vertical_rows_image.shape[0])) for center in aisle_centers], color=(0, 0, 255)) slice_image, slice_row_sums_vector, tree_locations_in_row = slices_sum_vectors_and_trees[len(slices_sum_vectors_and_trees) / 2] tree_locations = [(slice_image.shape[1] / 2, vertical_location) for vertical_location in tree_locations_in_row] slice_image = cv_utils.draw_points_on_image(cv2.cvtColor(slice_image, cv2.COLOR_GRAY2BGR), tree_locations, color=(0, 0, 255)) cv2.imwrite(os.path.join(self.repetition_dir, 'vertical_rows_aisle_centers.jpg'), vertical_rows_aisle_centers_image) plt.figure() plt.plot(column_sums_vector, color='green') plt.xlabel('x') plt.ylabel('column sums') plt.ticklabel_format(axis='y', style='sci', scilimits=(0, 4)) plt.autoscale(enable=True, axis='x', tight=True) plt.tight_layout() plt.savefig(os.path.join(self.repetition_dir, 'vertical_rows_column_sums.jpg')) cv2.imwrite(os.path.join(self.repetition_dir, 'vertical_row_slice.jpg'), slice_image) plt.figure(figsize=(4, 5)) plt.plot(slice_row_sums_vector[::-1], range(len(slice_row_sums_vector)), color='green') plt.xlabel('row sums') plt.ylabel('y') plt.axes().set_aspect(60) plt.ticklabel_format(axis='x', style='sci', scilimits=(0, 4)) plt.autoscale(enable=True, axis='y', tight=True) plt.tight_layout() plt.savefig(os.path.join(self.repetition_dir, 'slice_row_sums.jpg')) vertical_rows_centroids_image = cv_utils.draw_points_on_image(vertical_rows_image, itertools.chain.from_iterable(rotated_centroids), color=(0, 0, 255)) cv2.imwrite(os.path.join(self.repetition_dir, 'vertical_rows_centroids.jpg'), vertical_rows_centroids_image) centroids_image = cv_utils.draw_points_on_image(cropped_image, centroids, color=(0, 0, 255)) cv2.imwrite(os.path.join(self.repetition_dir, 'centroids.jpg'), centroids_image) if viz_mode: viz_utils.show_image('vertical rows aisle centers', vertical_rows_aisle_centers_image) viz_utils.show_image('vertical rows centroids', vertical_rows_centroids_image) # Estimate grid parameters grid_dim_x, grid_dim_y = trunks_detection.estimate_grid_dimensions(rotated_centroids) shear, drift_vectors, drift_vectors_filtered = trunks_detection.estimate_shear(rotated_centroids) drift_vectors_image = cv_utils.draw_lines_on_image(vertical_rows_centroids_image, drift_vectors, color=(255, 255, 0), arrowed=True) cv2.imwrite(os.path.join(self.repetition_dir, 'drift_vectors.jpg'), drift_vectors_image) drift_vectors_filtered_image = cv_utils.draw_lines_on_image(vertical_rows_centroids_image, drift_vectors_filtered, color=(255, 255, 0), arrowed=True) cv2.imwrite(os.path.join(self.repetition_dir, 'drift_vectors_filtered.jpg'), drift_vectors_filtered_image) if viz_mode: viz_utils.show_image('drift vectors', drift_vectors_filtered_image) # Get essential grid essential_grid = trunks_detection.get_essential_grid(grid_dim_x, grid_dim_y, shear, orientation, n=self.params['grid_size_for_optimization']) essential_grid_shape = np.max(essential_grid, axis=0) - np.min(essential_grid, axis=0) margin = essential_grid_shape * 0.2 essential_grid_shifted = [tuple(elem) for elem in np.array(essential_grid) - np.min(essential_grid, axis=0) + margin / 2] estimated_grid_image = np.full((int(essential_grid_shape[1] + margin[1]), int(essential_grid_shape[0] + margin[0]), 3), 255, dtype=np.uint8) estimated_grid_image = cv_utils.draw_points_on_image(estimated_grid_image, essential_grid_shifted, color=(255, 90, 0), radius=25) cv2.imwrite(os.path.join(self.repetition_dir, 'estimated_grid.png'), estimated_grid_image) if viz_mode: viz_utils.show_image('estimated grid', estimated_grid_image) # Find translation of the grid positioned_grid, translation, drift_vectors = trunks_detection.find_min_mse_position(centroids, essential_grid, cropped_image.shape[1], cropped_image.shape[0]) if positioned_grid is None: raise ExperimentFailure positioned_grid_image = cv_utils.draw_points_on_image(cropped_image, positioned_grid, color=(255, 90, 0), radius=25) cv2.imwrite(os.path.join(self.repetition_dir, 'positioned_grid_only.jpg'), positioned_grid_image) positioned_grid_image = cv_utils.draw_points_on_image(positioned_grid_image, centroids, color=(0, 0, 255)) positioned_grid_image = cv_utils.draw_lines_on_image(positioned_grid_image, drift_vectors, color=(255, 255, 0), thickness=3) cv2.imwrite(os.path.join(self.repetition_dir, 'positioned_grid.jpg'), positioned_grid_image) if viz_mode: viz_utils.show_image('positioned grid', positioned_grid_image) # Estimate sigma as a portion of intra-row distance sigma = grid_dim_y * self.params['initial_sigma_to_dim_y_ratio'] # Get a grid of gaussians grid = trunks_detection.get_grid(grid_dim_x, grid_dim_y, translation, orientation, shear, n=self.params['grid_size_for_optimization']) gaussians_filter = trunks_detection.get_gaussians_grid_image(grid, sigma, cropped_image.shape[1], cropped_image.shape[0]) cv2.imwrite(os.path.join(self.repetition_dir, 'gaussians_filter.jpg'), 255.0 * gaussians_filter) filter_output = np.multiply(gaussians_filter, cropped_canopies_mask) cv2.imwrite(os.path.join(self.repetition_dir, 'filter_output.jpg'), filter_output) if viz_mode: viz_utils.show_image('gaussians filter', gaussians_filter) viz_utils.show_image('filter output', filter_output) # Optimize the squared grid optimized_grid, optimized_grid_args, optimization_steps = trunks_detection.optimize_grid(grid_dim_x, grid_dim_y, translation, orientation, shear, sigma, cropped_image, pattern=np.ones([self.params['grid_size_for_optimization'],self.params['grid_size_for_optimization']])) optimized_grid_dim_x, optimized_grid_dim_y, optimized_translation_x, optimized_translation_y, optimized_orientation, optimized_shear, optimized_sigma = optimized_grid_args self.results[self.repetition_id] = {'optimized_grid_dim_x': optimized_grid_dim_x, 'optimized_grid_dim_y': optimized_grid_dim_y, 'optimized_translation_x': optimized_translation_x, 'optimized_translation_y': optimized_translation_y, 'optimized_orientation': optimized_orientation, 'optimized_shear': optimized_shear, 'optimized_sigma': optimized_sigma} optimized_grid_image = cv_utils.draw_points_on_image(cropped_image, optimized_grid, color=(0, 255, 0)) optimized_grid_image = cv_utils.draw_points_on_image(optimized_grid_image, positioned_grid, color=(255, 90, 0)) cv2.imwrite(os.path.join(self.repetition_dir, 'optimized_square_grid.jpg'), optimized_grid_image) if verbose_mode: os.mkdir(os.path.join(self.repetition_dir, 'nelder_mead_steps')) self.results[self.repetition_id]['optimization_steps_scores'] = {} for step_idx, (step_grid, step_score, step_sigma) in enumerate(optimization_steps): self.results[self.repetition_id]['optimization_steps_scores'][step_idx] = step_score step_image = cropped_image.copy() step_gaussians_filter = trunks_detection.get_gaussians_grid_image(step_grid, step_sigma, cropped_image.shape[1], cropped_image.shape[0]) step_gaussians_filter = cv2.cvtColor((255.0 * step_gaussians_filter).astype(np.uint8), cv2.COLOR_GRAY2BGR) alpha = 0.5 weighted = cv2.addWeighted(step_image, alpha, step_gaussians_filter, 1 - alpha, gamma=0) update_indices = np.where(step_gaussians_filter != 0) step_image[update_indices] = weighted[update_indices] step_image = cv_utils.draw_points_on_image(step_image, step_grid, color=(0, 255, 0)) cv2.imwrite(os.path.join(self.repetition_dir, 'nelder_mead_steps', 'optimization_step_%d_[%.2f].jpg' % (step_idx, step_score)), step_image) if viz_mode: viz_utils.show_image('optimized square grid', optimized_grid_image) # Extrapolate full grid on the entire image full_grid_np = trunks_detection.extrapolate_full_grid(optimized_grid_dim_x, optimized_grid_dim_y, optimized_orientation, optimized_shear, base_grid_origin=np.array(optimized_grid[0]) + np.array(crop_origin), image_width=image.shape[1], image_height=image.shape[0]) full_grid_image = cv_utils.draw_points_on_image(image, [elem for elem in full_grid_np.flatten() if type(elem) is tuple], color=(0, 255, 0)) cv2.imwrite(os.path.join(self.repetition_dir, 'full_grid.jpg'), full_grid_image) if viz_mode: viz_utils.show_image('full grid', full_grid_image) # Match given orchard pattern to grid full_grid_scores_np, full_grid_pose_to_score = trunks_detection.get_grid_scores_array(full_grid_np, image, sigma) full_grid_with_scores_image = full_grid_image.copy() top_bottom_margin_size = int(0.05 * full_grid_with_scores_image.shape[0]) left_right_marign_size = int(0.05 * full_grid_with_scores_image.shape[1]) full_grid_with_scores_image = cv2.copyMakeBorder(full_grid_with_scores_image, top_bottom_margin_size, top_bottom_margin_size, left_right_marign_size, left_right_marign_size, cv2.BORDER_CONSTANT, dst=None, value=(255, 255, 255)) for pose, score in full_grid_pose_to_score.items(): pose = tuple(np.array(pose) + np.array([left_right_marign_size, top_bottom_margin_size])) full_grid_with_scores_image = cv_utils.put_shaded_text_on_image(full_grid_with_scores_image, '%.2f' % score, pose, color=(0, 255, 0), offset=(15, 15)) cv2.imwrite(os.path.join(self.repetition_dir, 'full_grid_with_scores.jpg'), full_grid_with_scores_image) orchard_pattern_np = self.params['orchard_pattern'] pattern_origin, origin_to_sub_scores_array = trunks_detection.fit_pattern_on_grid(full_grid_scores_np, orchard_pattern_np) if pattern_origin is None: raise ExperimentFailure if verbose_mode: os.mkdir(os.path.join(self.repetition_dir, 'pattern_matching')) for step_origin, step_sub_score_array in origin_to_sub_scores_array.items(): pattern_matching_image = image.copy() step_trunk_coordinates_np = full_grid_np[step_origin[0] : step_origin[0] + orchard_pattern_np.shape[0], step_origin[1] : step_origin[1] + orchard_pattern_np.shape[1]] step_trunk_points_list = step_trunk_coordinates_np.flatten().tolist() pattern_matching_image = cv_utils.draw_points_on_image(pattern_matching_image, step_trunk_points_list, color=(255, 255, 255), radius=25) for i in range(step_trunk_coordinates_np.shape[0]): for j in range(step_trunk_coordinates_np.shape[1]): step_trunk_coordinates = (int(step_trunk_coordinates_np[(i, j)][0]), int(step_trunk_coordinates_np[(i, j)][1])) pattern_matching_image = cv_utils.put_shaded_text_on_image(pattern_matching_image, '%.2f' % step_sub_score_array[(i, j)], step_trunk_coordinates, color=(255, 255, 255), offset=(20, 20)) pattern_matching_image = cv_utils.draw_points_on_image(pattern_matching_image, [elem for elem in full_grid_np.flatten() if type(elem) is tuple], color=(0, 255, 0)) mean_score = float(np.mean(step_sub_score_array)) cv2.imwrite(os.path.join(self.repetition_dir, 'pattern_matching', 'origin=%d_%d_score=%.2f.jpg' % (step_origin[0], step_origin[1], mean_score)), pattern_matching_image) trunk_coordinates_np = full_grid_np[pattern_origin[0] : pattern_origin[0] + orchard_pattern_np.shape[0], pattern_origin[1] : pattern_origin[1] + orchard_pattern_np.shape[1]] trunk_points_list = trunk_coordinates_np[orchard_pattern_np == 1] trunk_coordinates_orig_np = trunk_coordinates_np.copy() trunk_coordinates_np[orchard_pattern_np != 1] = np.nan semantic_trunks_image = cv_utils.draw_points_on_image(image, trunk_points_list, color=(255, 255, 255)) for i in range(trunk_coordinates_np.shape[0]): for j in range(trunk_coordinates_np.shape[1]): if np.any(np.isnan(trunk_coordinates_np[(i, j)])): continue trunk_coordinates = (int(trunk_coordinates_np[(i, j)][0]), int(trunk_coordinates_np[(i, j)][1])) tree_label = '%d/%s' % (j + 1, chr(65 + (trunk_coordinates_np.shape[0] - 1 - i))) semantic_trunks_image = cv_utils.put_shaded_text_on_image(semantic_trunks_image, tree_label, trunk_coordinates, color=(255, 255, 255), offset=(15, 15)) cv2.imwrite(os.path.join(self.repetition_dir, 'semantic_trunks.jpg'), semantic_trunks_image) if viz_mode: viz_utils.show_image('semantic trunks', semantic_trunks_image) # Refine trunk locations refined_trunk_coordinates_np = trunks_detection.refine_trunk_locations(image, trunk_coordinates_np, optimized_sigma, optimized_grid_dim_x, optimized_grid_dim_x) confidence = trunks_detection.get_trees_confidence(canopies_mask, refined_trunk_coordinates_np[orchard_pattern_np == 1], trunk_coordinates_orig_np[orchard_pattern_np == -1], optimized_sigma) refined_trunk_points_list = refined_trunk_coordinates_np[orchard_pattern_np == 1] refined_trunk_coordinates_np[orchard_pattern_np != 1] = np.nan refined_semantic_trunks_image = cv_utils.draw_points_on_image(image, refined_trunk_points_list, color=(255, 255, 255)) semantic_trunks = {} for i in range(refined_trunk_coordinates_np.shape[0]): for j in range(refined_trunk_coordinates_np.shape[1]): if np.any(np.isnan(refined_trunk_coordinates_np[(i, j)])): continue trunk_coordinates = (int(refined_trunk_coordinates_np[(i, j)][0]), int(refined_trunk_coordinates_np[(i, j)][1])) semantic_trunks['%d/%s' % (j + 1, chr(65 + (trunk_coordinates_np.shape[0] - 1 - i)))] = trunk_coordinates tree_label = '%d/%s' % (j + 1, chr(65 + (refined_trunk_coordinates_np.shape[0] - 1 - i))) refined_semantic_trunks_image = cv_utils.put_shaded_text_on_image(refined_semantic_trunks_image, tree_label, trunk_coordinates, color=(255, 255, 255), offset=(15, 15)) tree_scores_stats = trunks_detection.get_tree_scores_stats(canopies_mask, trunk_points_list, optimized_sigma) self.results[self.repetition_id]['semantic_trunks'] = semantic_trunks self.results[self.repetition_id]['tree_scores_stats'] = tree_scores_stats self.results[self.repetition_id]['confidence'] = confidence cv2.imwrite(os.path.join(self.repetition_dir, 'refined_semantic_trunks[%.2f].jpg' % confidence), refined_semantic_trunks_image) if viz_mode: viz_utils.show_image('refined semantic trunks', refined_semantic_trunks_image)
viz_mode = True image_key = '15-08-1' metadata_path = r'/home/omer/Downloads/experiment_metadata_baseline.json' if __name__ == '__main__': with open(metadata_path) as f: metadata = json.load(f) trunks = metadata['results']['1']['trunk_points_list'] optimized_sigma = metadata['results']['1']['optimized_sigma'] image = cv2.imread(dji.snapshots_80_meters[image_key].path) if viz_mode: viz_utils.show_image('image', image) trunks = [(int(elem[0]), int(elem[1])) for elem in trunks] upper_left, lower_right = cv_utils.get_bounding_box(image, trunks, expand_ratio=0.1) cropped_image = image[upper_left[1]:lower_right[1], upper_left[0]:lower_right[0]] trunks = np.array(trunks) - np.array(upper_left) if viz_mode: viz_utils.show_image('cropped image', cropped_image) gaussians = trunks_detection_old_cv.get_gaussians_grid_image( trunks, optimized_sigma,
################################################################################################# # CONFIG # ################################################################################################# setup = 'nov2' # apr / nov1 / nov2 ################################################################################################# if setup == 'apr': from content.data_pointers.lavi_april_18.dji import trunks_detection_results_dir from content.data_pointers.lavi_april_18.dji import selected_trunks_detection_experiments elif setup == 'nov1': from content.data_pointers.lavi_november_18.dji import trunks_detection_results_dir from content.data_pointers.lavi_november_18.dji import plot1_selected_trunks_detection_experiments as selected_trunks_detection_experiments elif setup == 'nov2': from content.data_pointers.lavi_november_18.dji import trunks_detection_results_dir from content.data_pointers.lavi_november_18.dji import plot2_selected_trunks_detection_experiments as selected_trunks_detection_experiments if __name__ == '__main__': execution_dir = utils.create_new_execution_folder('external_trunks_tagging') for experiment_name in selected_trunks_detection_experiments: with open(os.path.join(trunks_detection_results_dir, experiment_name, 'experiment_summary.json')) as f: experiment_summary = json.load(f) image = cv2.imread(experiment_summary['data_sources']) external_trunk_poses = cv_utils.sample_pixel_coordinates(image, multiple=True) image_with_points = cv_utils.draw_points_on_image(image, external_trunk_poses, color=(255, 255, 255)) viz_utils.show_image('external_trunks', image_with_points) with open(os.path.join(trunks_detection_results_dir, experiment_name, 'external_trunks.json'), 'w') as f: json.dump(external_trunk_poses, f, indent=4)