예제 #1
0
def runMultTest(transaction_list, trans4lcm, threshold, set_method, lcm_path, max_comb, outlog, alternative):
	max_lambda = maxLambda(transaction_list)
	lam_star = 1; func_f = None;
	try:
		if set_method == "fisher":
			func_f = functions4fisher.FunctionOfX(transaction_list, max_lambda, abs(alternative))
		elif set_method == "u_test":
			func_f = functions4u_test.FunctionOfX(transaction_list, alternative)
		elif set_method == "chi":
			func_f = functions4chi.FunctionOfX(transaction_list, max_lambda, abs( alternative))
		else:
			sys.stderr.write("Error: choose \"fisher\", \"chi\" or \"u_test\" by using -p option.\n")
			outlog.close()
			sys.exit()
		
		lam = max_lambda
		
		# check a MASL of max_lambda
		if set_method in BINARY_METHODS: 
			n1 = func_f.sumValue(transaction_list)
			if (n1 < max_lambda):
				max_lambda = int( n1 )
				lam = int( n1 )
		
		fre_pattern = frequentPatterns.LCM(lcm_path, max_lambda, outlog)
		fre_pattern.makeFile4Lem(transaction_list, trans4lcm) # make itemset file for lcm
		
		# If Fisher's exact test or chi-square test is used for computing P-value, 
		# LCM-LAMP is run to find optimal lambda.
		if set_method == "fisher":
			neg_size = func_f.getAllSize() - func_f.getN1()
			n1 = min( n1, neg_size )
			# # of positives == # of negatives, and two.sided hypothesis test.
			if ( func_f.getN1() == neg_size ) and (alternative == 0):
				fre_pattern, lam_star = depthFirst( trans4lcm, fre_pattern, max_comb, n1, 0.5*threshold, 1 )
			else:
				fre_pattern, lam_star = depthFirst( trans4lcm, fre_pattern, max_comb, n1, threshold, 1 )
		elif set_method == "chi":
			neg_size = func_f.getAllSize() - func_f.getN1()
			n1 = min( n1, neg_size )
			# two-sided hypothesis test
			if alternative == 0:
				fre_pattern, lam_star = depthFirst( trans4lcm, fre_pattern, max_comb, n1, 0.5*threshold, 2 )
			# one-sided
			else:
				fre_pattern, lam_star = depthFirst( trans4lcm, fre_pattern, max_comb, n1, threshold, 2 )
		# If Mann-Whitney U test of Chi-square test is used,
		# LAMP ver 1. is run for computing the optimal lambda. 
		else:
			# two-sided hypothesis test
			if alternative == 0:
				fre_pattern, lam_star = breadthFirst( trans4lcm, fre_pattern, func_f, max_comb, 0.5*threshold, lam, outlog )
			# one-sided hypothesis test
			else:
				fre_pattern, lam_star = breadthFirst( trans4lcm, fre_pattern, func_f, max_comb, threshold, lam, outlog )
	except fs.TestMethodError, e:
		sys.exit()
예제 #2
0
            sys.exit

    except fs.TestMethodError, e:
        sys.exit()

    try:
        lam = max_lambda

        # check a MASL of max_lambda
        if (set_method == 'fisher') or (set_method == 'chi'):
            n1 = func_f.sumValue(transaction_list)
            if (n1 < max_lambda):
                max_lambda = int(n1)
                lam = int(n1)

        fre_pattern = frequentPatterns.LCM(lcm_path, max_lambda, outlog)
        fre_pattern.makeFile4Lem(transaction_list,
                                 trans4lcm)  # make itemset file for lcm
        # If file for Lcm exist, comfiem that overwrite the file.
        # solve K and lambda
        while lam > 1:
            outlog.write("--- lambda: " + str(lam) + " ---\n")
            # if lambda == 1, all tests which support >= 1 are tested.
            if lam == 1:
                lam_star = lam
                fre_pattern.frequentPatterns(trans4lcm, lam,
                                             max_comb)  # line 3 of Algorithm
                k = fre_pattern.getTotal(lam)
                break

            fre_pattern.frequentPatterns(trans4lcm, lam,
예제 #3
0
파일: lamp.py 프로젝트: a-terada/lamp
def runMultTest(transaction_list, trans4lcm, threshold, set_method, lcm_path,
                max_comb, outlog, alternative):
    max_lambda = maxLambda(transaction_list)
    lam_star = 1
    func_f = None
    try:
        if set_method == "fisher":
            func_f = functions4fisher.FunctionOfX(transaction_list, max_lambda,
                                                  abs(alternative))
        elif set_method == "u_test":
            func_f = functions4u_test.FunctionOfX(transaction_list,
                                                  alternative)
        elif set_method == "chi":
            func_f = functions4chi.FunctionOfX(transaction_list, max_lambda,
                                               abs(alternative))
        else:
            sys.stderr.write(
                "Error: choose \"fisher\", \"chi\" or \"u_test\" by using -p option.\n"
            )
            outlog.close()
            sys.exit()

        lam = max_lambda

        # check a MASL of max_lambda
        if set_method in BINARY_METHODS:
            n1 = func_f.sumValue(transaction_list)
            if (n1 < max_lambda):
                max_lambda = int(n1)
                lam = int(n1)

        fre_pattern = frequentPatterns.LCM(lcm_path, max_lambda, outlog)
        fre_pattern.makeFile4Lem(transaction_list,
                                 trans4lcm)  # make itemset file for lcm

        # If Fisher's exact test or chi-square test is used for computing P-value,
        # LCM-LAMP is run to find optimal lambda.
        if set_method == "fisher":
            neg_size = func_f.getAllSize() - func_f.getN1()
            n1 = min(n1, neg_size)
            # # of positives == # of negatives, and two.sided hypothesis test.
            if (func_f.getN1() == neg_size) and (alternative == 0):
                fre_pattern, lam_star = depthFirst(trans4lcm, fre_pattern,
                                                   max_comb, n1,
                                                   0.5 * threshold, 1)
            else:
                fre_pattern, lam_star = depthFirst(trans4lcm, fre_pattern,
                                                   max_comb, n1, threshold, 1)
        elif set_method == "chi":
            neg_size = func_f.getAllSize() - func_f.getN1()
            n1 = min(n1, neg_size)
            # two-sided hypothesis test
            if alternative == 0:
                fre_pattern, lam_star = depthFirst(trans4lcm, fre_pattern,
                                                   max_comb, n1,
                                                   0.5 * threshold, 2)
            # one-sided
            else:
                fre_pattern, lam_star = depthFirst(trans4lcm, fre_pattern,
                                                   max_comb, n1, threshold, 2)
        # If Mann-Whitney U test of Chi-square test is used,
        # LAMP ver 1. is run for computing the optimal lambda.
        else:
            # two-sided hypothesis test
            if alternative == 0:
                fre_pattern, lam_star = breadthFirst(trans4lcm, fre_pattern,
                                                     func_f, max_comb,
                                                     0.5 * threshold, lam,
                                                     outlog)
            # one-sided hypothesis test
            else:
                fre_pattern, lam_star = breadthFirst(trans4lcm, fre_pattern,
                                                     func_f, max_comb,
                                                     threshold, lam, outlog)
    except fs.TestMethodError as e:
        sys.exit()
    except frequentPatterns.LCMError as e:
        sys.exit()

    try:
        fre_pattern.frequentPatterns(trans4lcm, lam_star,
                                     max_comb)  # P_lambda* at line 13
        k = fre_pattern.getTotal(lam_star)
    except frequentPatterns.LCMError as e:
        sys.exit()

    # multiple test by using k and lambda_star
    outlog.write("finish calculation of K: %s\n" % k)
    # If lam_star > max_lambda, m_lambda set to max_lambda.
    # This case cause when optimal solution is found at first step.
    outlog.write("%s\n" % lam_star)
    if (lam_star > max_lambda):
        lam_star = max_lambda

    correction_term_time = time.time()
    return (fre_pattern, lam_star, max_lambda, correction_term_time, func_f)