def make_cmp(self): # File lists for the final cmp files (these are re-generated below to fit a precise numpy data array) self.nn_cmp_file_list = data_utils.prepare_file_path_list( self.file_id_list, self.out_feat_dir, self.cmp_ext) # self.nn_cmp_norm_file_list = data_utils.prepare_file_path_list(self.file_id_list, self.out_feat_dir_norm, # self.cmp_ext) # TODO: Get the delta and acceleration windows from the recipe file. acoustic_worker = AcousticComposition(delta_win=[-0.5, 0.0, 0.5], acc_win=[1.0, -2.0, 1.0]) # TODO: Lets try this at some point # if 'dur' in list(cfg.in_dir_dict.keys()) and cfg.AcousticModel: # acoustic_worker.make_equal_frames(dur_file_list, lf0_file_list, cfg.in_dimension_dict) acoustic_worker.prepare_nn_data(self.in_file_list_dict, self.nn_cmp_file_list, cfg.in_dimension_dict, cfg.out_dimension_dict) remover = SilenceRemover(n_cmp=cfg.cmp_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features=cfg.add_frame_features, subphone_feats=cfg.subphone_feats) remover.remove_silence( self.nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number], self.inp_feat_file_list[0:cfg.train_file_number + cfg.valid_file_number], self.nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number]) # save to itself
def get_normed_cmp(self, rootpath): delta_win = [-0.5, 0.0, 0.5] acc_win = [1.0, -2.0, 1.0] acoustic_worker = AcousticComposition(delta_win=delta_win, acc_win=acc_win) in_file_list_dict, nn_cmp_file_list, nn_cmp_norm_file_list = self.make_input_output_file_list( rootpath) in_dimension_dict = {'mgc': 60, 'lf0': 1, 'bap': 1} out_dimension_dict = {'mgc': 180, 'vuv': 1, 'lf0': 3, 'bap': 3} acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, in_dimension_dict, out_dimension_dict) #var_dir = os.path.join(rootpath, '/var/') var_dir = rootpath + '/var/' if not os.path.exists(var_dir): os.makedirs(var_dir) var_file_dict = {} for feature_name in out_dimension_dict.keys(): var_file_dict[feature_name] = os.path.join( var_dir, feature_name + '_' + str(out_dimension_dict[feature_name])) cmp_dim = 187 normaliser = MeanVarianceNorm(feature_dimension=cmp_dim) global_mean_vector = normaliser.compute_mean(nn_cmp_file_list, 0, cmp_dim) global_std_vector = normaliser.compute_std(nn_cmp_file_list, global_mean_vector, 0, cmp_dim) normaliser.feature_normalisation(nn_cmp_file_list, nn_cmp_norm_file_list) cmp_norm_info = np.concatenate((global_mean_vector, global_std_vector), axis=0) norm_info_file = rootpath + '/norm_info_file' cmp_norm_info = np.array(cmp_norm_info, 'float32') fid = open(norm_info_file, 'wb') cmp_norm_info.tofile(fid) fid.close() feature_index = 0 for feature_name in out_dimension_dict.keys(): feature_std_vector = np.array( global_std_vector[:, feature_index:feature_index + out_dimension_dict[feature_name]], 'float32') fid = open(var_file_dict[feature_name], 'w') feature_var_vector = feature_std_vector**2 feature_var_vector.tofile(fid) fid.close() feature_index += out_dimension_dict[feature_name]
def main_function(cfg): # get a logger for this main function logger = logging.getLogger("main") # get another logger to handle plotting duties plotlogger = logging.getLogger("plotting") # later, we might do this via a handler that is created, attached and configured # using the standard config mechanism of the logging module # but for now we need to do it manually plotlogger.set_plot_path(cfg.plot_dir) #### parameter setting######## hidden_layers_sizes = cfg.hyper_params['hidden_layer_size'] ####prepare environment try: file_id_list = read_file_list(cfg.file_id_scp) logger.debug('Loaded file id list from %s' % cfg.file_id_scp) except IOError: # this means that open(...) threw an error logger.critical('Could not load file id list from %s' % cfg.file_id_scp) raise ###total file number including training, development, and testing total_file_number = len(file_id_list) data_dir = cfg.data_dir nn_cmp_dir = os.path.join(data_dir, 'nn' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) nn_cmp_nosil_dir = os.path.join(data_dir, 'nn_nosil' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) nn_cmp_norm_dir = os.path.join(data_dir, 'nn_norm' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) model_dir = os.path.join(cfg.work_dir, 'nnets_model') gen_dir = os.path.join(cfg.work_dir, 'gen') in_file_list_dict = {} for feature_name in list(cfg.in_dir_dict.keys()): in_file_list_dict[feature_name] = prepare_file_path_list(file_id_list, cfg.in_dir_dict[feature_name], cfg.file_extension_dict[feature_name], False) nn_cmp_file_list = prepare_file_path_list(file_id_list, nn_cmp_dir, cfg.cmp_ext) nn_cmp_nosil_file_list = prepare_file_path_list(file_id_list, nn_cmp_nosil_dir, cfg.cmp_ext) nn_cmp_norm_file_list = prepare_file_path_list(file_id_list, nn_cmp_norm_dir, cfg.cmp_ext) ###normalisation information norm_info_file = os.path.join(data_dir, 'norm_info' + cfg.combined_feature_name + '_' + str( cfg.cmp_dim) + '_' + cfg.output_feature_normalisation + '.dat') ### normalise input full context label # currently supporting two different forms of lingustic features # later, we should generalise this if cfg.label_style == 'HTS': label_normaliser = HTSLabelNormalisation(question_file_name=cfg.question_file_name) lab_dim = label_normaliser.dimension + cfg.appended_input_dim logger.info('Input label dimension is %d' % lab_dim) suffix = str(lab_dim) elif cfg.label_style == 'HTS_duration': label_normaliser = HTSDurationLabelNormalisation(question_file_name=cfg.question_file_name) lab_dim = label_normaliser.dimension ## + cfg.appended_input_dim logger.info('Input label dimension is %d' % lab_dim) suffix = str(lab_dim) # no longer supported - use new "composed" style labels instead elif cfg.label_style == 'composed': # label_normaliser = XMLLabelNormalisation(xpath_file_name=cfg.xpath_file_name) suffix = 'composed' if cfg.process_labels_in_work_dir: label_data_dir = cfg.work_dir else: label_data_dir = data_dir # the number can be removed binary_label_dir = os.path.join(label_data_dir, 'binary_label_' + suffix) nn_label_dir = os.path.join(label_data_dir, 'nn_no_silence_lab_' + suffix) nn_label_norm_dir = os.path.join(label_data_dir, 'nn_no_silence_lab_norm_' + suffix) # nn_label_norm_mvn_dir = os.path.join(data_dir, 'nn_no_silence_lab_norm_'+suffix) in_label_align_file_list = prepare_file_path_list(file_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) binary_label_file_list = prepare_file_path_list(file_id_list, binary_label_dir, cfg.lab_ext) nn_label_file_list = prepare_file_path_list(file_id_list, nn_label_dir, cfg.lab_ext) nn_label_norm_file_list = prepare_file_path_list(file_id_list, nn_label_norm_dir, cfg.lab_ext) # to do - sanity check the label dimension here? min_max_normaliser = None label_norm_file = 'label_norm_%s.dat' % (cfg.label_style) label_norm_file = os.path.join(label_data_dir, label_norm_file) normaliser = math_statis.Statis(feature_dimension=lab_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file, min_value=0.01, max_value=0.99) if cfg.NORMLAB and (cfg.label_style in ['HTS', 'HTS_duration']): # simple HTS labels logger.info('preparing label data (input) using standard HTS style labels') label_normaliser.perform_normalisation(in_label_align_file_list, binary_label_file_list) if cfg.label_style == 'HTS': remover = SilenceRemover(n_cmp=lab_dim, silence_pattern=cfg.silence_pattern) remover.remove_silence(binary_label_file_list, in_label_align_file_list, nn_label_file_list) elif cfg.label_style == 'HTS_duration': ## don't remove silences for duration nn_label_file_list = binary_label_file_list ###use only training data to find min-max information, then apply on the whole dataset normaliser.find_min_max_values(nn_label_file_list[0:cfg.train_file_number]) normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list) if cfg.NORMLAB and (cfg.label_style == 'composed'): # new flexible label preprocessor logger.info('preparing label data (input) using "composed" style labels') label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) logger.info('Loaded label configuration') # logger.info('%s' % label_composer.configuration.labels ) lab_dim = label_composer.compute_label_dimension() logger.info('label dimension will be %d' % lab_dim) if cfg.precompile_xpaths: label_composer.precompile_xpaths() # there are now a set of parallel input label files (e.g, one set of HTS and another set of Ossian trees) # create all the lists of these, ready to pass to the label composer in_label_align_file_list = {} for label_style, label_style_required in label_composer.label_styles.items(): if label_style_required: logger.info('labels of style %s are required - constructing file paths for them' % label_style) if label_style == 'xpath': in_label_align_file_list['xpath'] = prepare_file_path_list(file_id_list, cfg.xpath_label_align_dir, cfg.utt_ext, False) elif label_style == 'hts': in_label_align_file_list['hts'] = prepare_file_path_list(file_id_list, cfg.hts_label_align_dir, cfg.lab_ext, False) else: logger.critical('unsupported label style %s specified in label configuration' % label_style) raise Exception # now iterate through the files, one at a time, constructing the labels for them num_files = len(file_id_list) logger.info('the label styles required are %s' % label_composer.label_styles) for i in range(num_files): logger.info('making input label features for %4d of %4d' % (i + 1, num_files)) # iterate through the required label styles and open each corresponding label file # a dictionary of file descriptors, pointing at the required files required_labels = {} for label_style, label_style_required in label_composer.label_styles.items(): # the files will be a parallel set of files for a single utterance # e.g., the XML tree and an HTS label file if label_style_required: required_labels[label_style] = open(in_label_align_file_list[label_style][i], 'r') logger.debug(' opening label file %s' % in_label_align_file_list[label_style][i]) logger.debug('label styles with open files: %s' % required_labels) label_composer.make_labels(required_labels, out_file_name=binary_label_file_list[i], fill_missing_values=cfg.fill_missing_values, iterate_over_frames=cfg.iterate_over_frames) # now close all opened files for fd in required_labels.values(): fd.close() # silence removal if cfg.remove_silence_using_binary_labels: silence_feature = 0 ## use first feature in label -- hardcoded for now logger.info('Silence removal from label using silence feature: %s' % ( label_composer.configuration.labels[silence_feature])) logger.info('Silence will be removed from CMP files in same way') ## Binary labels have 2 roles: both the thing trimmed and the instructions for trimming: trim_silence(binary_label_file_list, nn_label_file_list, lab_dim, \ binary_label_file_list, lab_dim, silence_feature, percent_to_keep=5) else: logger.info('No silence removal done') # start from the labels we have just produced, not trimmed versions nn_label_file_list = binary_label_file_list ###use only training data to find min-max information, then apply on the whole dataset normaliser.find_min_max_values(nn_label_file_list[0:cfg.train_file_number]) normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list) if normaliser != None: ### save label normalisation information for unseen testing labels label_min_vector = normaliser.min_vector label_max_vector = normaliser.max_vector label_norm_info = numpy.concatenate((label_min_vector, label_max_vector), axis=0) label_norm_info = numpy.array(label_norm_info, 'float32') fid = open(label_norm_file, 'wb') label_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' % (label_min_vector.size, label_norm_file)) ### make output acoustic data if cfg.MAKECMP: logger.info('creating acoustic (output) features') delta_win = cfg.delta_win # [-0.5, 0.0, 0.5] acc_win = cfg.acc_win # [1.0, -2.0, 1.0] acoustic_worker = AcousticComposition(delta_win=delta_win, acc_win=acc_win) acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, cfg.in_dimension_dict, cfg.out_dimension_dict) if cfg.label_style == 'HTS': if cfg.remove_silence_using_binary_labels: ## do this to get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() silence_feature = 0 ## use first feature in label -- hardcoded for now logger.info('Silence removal from CMP using binary label file') ## overwrite the untrimmed audio with the trimmed version: trim_silence(nn_cmp_file_list, nn_cmp_nosil_file_list, cfg.cmp_dim, binary_label_file_list, lab_dim, silence_feature) else: ## back off to previous method using HTS labels: remover = SilenceRemover(n_cmp=cfg.cmp_dim, silence_pattern=cfg.silence_pattern) remover.remove_silence(nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number], in_label_align_file_list[0:cfg.train_file_number + cfg.valid_file_number], nn_cmp_nosil_file_list[ 0:cfg.train_file_number + cfg.valid_file_number]) # save to itself elif cfg.label_style == 'HTS_duration': ## don't remove silences for duration nn_cmp_nosil_file_list = nn_cmp_file_list pass ### save acoustic normalisation information for normalising the features back var_dir = os.path.join(data_dir, 'var') if not os.path.exists(var_dir): os.makedirs(var_dir) var_file_dict = {} for feature_name in list(cfg.out_dimension_dict.keys()): var_file_dict[feature_name] = os.path.join(var_dir, feature_name + '_' + str(cfg.out_dimension_dict[feature_name])) ### normalise output acoustic data if cfg.NORMCMP: logger.info('normalising acoustic (output) features using method %s' % cfg.output_feature_normalisation) cmp_norm_info = None normaliser = math_statis.Statis(feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file) if cfg.output_feature_normalisation == 'MVN': ###calculate mean and std vectors on the training data, and apply on the whole dataset global_mean_vector = normaliser.compute_mean(nn_cmp_nosil_file_list[0:cfg.train_file_number], 0, cfg.cmp_dim) global_std_vector = normaliser.compute_std(nn_cmp_nosil_file_list[0:cfg.train_file_number], global_mean_vector, 0, cfg.cmp_dim) normaliser.feature_normalisation(nn_cmp_nosil_file_list[0:cfg.train_file_number + cfg.valid_file_number], nn_cmp_norm_file_list[0:cfg.train_file_number + cfg.valid_file_number]) cmp_norm_info = numpy.concatenate((global_mean_vector, global_std_vector), axis=0) elif cfg.output_feature_normalisation == 'MINMAX': global_mean_vector = normaliser.compute_mean(nn_cmp_nosil_file_list[0:cfg.train_file_number]) global_std_vector = normaliser.compute_std(nn_cmp_nosil_file_list[0:cfg.train_file_number], global_mean_vector) normaliser = math_statis.Statis(feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file, min_value=0.01, max_value=0.99) # min_max_normaliser = MinMaxNormalisation(feature_dimension=cfg.cmp_dim, min_value=0.01, max_value=0.99) normaliser.find_min_max_values(nn_cmp_nosil_file_list[0:cfg.train_file_number]) normaliser.normalise_data(nn_cmp_nosil_file_list, nn_cmp_norm_file_list) cmp_min_vector = normaliser.min_vector cmp_max_vector = normaliser.max_vector cmp_norm_info = numpy.concatenate((cmp_min_vector, cmp_max_vector), axis=0) else: logger.critical('Normalisation type %s is not supported!\n' % (cfg.output_feature_normalisation)) raise cmp_norm_info = numpy.array(cmp_norm_info, 'float32') fid = open(norm_info_file, 'wb') cmp_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' % (cfg.output_feature_normalisation, norm_info_file)) # logger.debug(' value was\n%s' % cmp_norm_info) feature_index = 0 for feature_name in list(cfg.out_dimension_dict.keys()): feature_std_vector = numpy.array( global_std_vector[:, feature_index:feature_index + cfg.out_dimension_dict[feature_name]], 'float32') fid = open(var_file_dict[feature_name], 'w') feature_std_vector.tofile(fid) fid.close() logger.info('saved %s variance vector to %s' % (feature_name, var_file_dict[feature_name])) # logger.debug(' value was\n%s' % feature_std_vector) feature_index += cfg.out_dimension_dict[feature_name] train_x_file_list = nn_label_norm_file_list[0:cfg.train_file_number] train_y_file_list = nn_cmp_norm_file_list[0:cfg.train_file_number] valid_x_file_list = nn_label_norm_file_list[cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number] valid_y_file_list = nn_cmp_norm_file_list[cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number] test_x_file_list = nn_label_norm_file_list[ cfg.train_file_number + cfg.valid_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] test_y_file_list = nn_cmp_norm_file_list[ cfg.train_file_number + cfg.valid_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] # we need to know the label dimension before training the DNN # computing that requires us to look at the labels # # currently, there are two ways to do this if cfg.label_style == 'HTS': label_normaliser = HTSLabelNormalisation(question_file_name=cfg.question_file_name) lab_dim = label_normaliser.dimension + cfg.appended_input_dim elif cfg.label_style == 'composed': label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() logger.info('label dimension is %d' % lab_dim) combined_model_arch = str(len(hidden_layers_sizes)) for hid_size in hidden_layers_sizes: combined_model_arch += '_' + str(hid_size) nnets_file_name = '%s/%s_%s_%d_%s_%d.%d.train.%d.model' \ % (model_dir, cfg.model_type, cfg.combined_feature_name, int(cfg.multistream_switch), combined_model_arch, lab_dim, cfg.cmp_dim, cfg.train_file_number) ### DNN model training if cfg.TRAINDNN: logger.info('training DNN') try: os.makedirs(model_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create model directory %s' % model_dir) logger.critical(' OS error was: %s' % e.strerror) raise try: # print 'start DNN' train_DNN(train_xy_file_list=(train_x_file_list, train_y_file_list), \ valid_xy_file_list=(valid_x_file_list, valid_y_file_list), \ nnets_file_name=nnets_file_name, \ n_ins=lab_dim, n_outs=cfg.cmp_dim, ms_outs=cfg.multistream_outs, \ hyper_params=cfg.hyper_params, buffer_size=cfg.buffer_size, plot=cfg.plot) except KeyboardInterrupt: logger.critical('train_DNN interrupted via keyboard') # Could 'raise' the exception further, but that causes a deep traceback to be printed # which we don't care about for a keyboard interrupt. So, just bail out immediately sys.exit(1) except: logger.critical('train_DNN threw an exception') raise ### generate parameters from DNN temp_dir_name = '%s_%s_%d_%d_%d_%d_%d_%d' \ % (cfg.model_type, cfg.combined_feature_name, int(cfg.do_post_filtering), \ cfg.train_file_number, lab_dim, cfg.cmp_dim, \ len(hidden_layers_sizes), hidden_layers_sizes[0]) gen_dir = os.path.join(gen_dir, temp_dir_name) gen_file_id_list = file_id_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] test_x_file_list = nn_label_norm_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] if cfg.DNNGEN: logger.info('generating from DNN') try: os.makedirs(gen_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create generation directory %s' % gen_dir) logger.critical(' OS error was: %s' % e.strerror) raise gen_file_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.cmp_ext) # dnn_generation(valid_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list) dnn_generation(test_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list) logger.debug('denormalising generated output using method %s' % cfg.output_feature_normalisation) fid = open(norm_info_file, 'rb') cmp_min_max = numpy.fromfile(fid, dtype=numpy.float32) fid.close() cmp_min_max = cmp_min_max.reshape((2, -1)) cmp_min_vector = cmp_min_max[0,] cmp_max_vector = cmp_min_max[1,] denormaliser = math_statis.Statis(feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file) if cfg.output_feature_normalisation == 'MVN' denormaliser.feature_denormalisation(gen_file_list, gen_file_list, cmp_min_vector, cmp_max_vector) elif cfg.output_feature_normalisation == 'MINMAX': denormaliser = math_statis.Statis(feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file, min_value=0.01, max_value=0.99, min_vector=cmp_min_vector, max_vector=cmp_max_vector) denormaliser.denormalise_data(gen_file_list, gen_file_list) else: logger.critical('denormalising method %s is not supported!\n' % (cfg.output_feature_normalisation)) raise ##perform MLPG to smooth parameter trajectory ## lf0 is included, the output features much have vuv. generator = ParameterGeneration(gen_wav_features=cfg.gen_wav_features) generator.acoustic_decomposition(gen_file_list, cfg.cmp_dim, cfg.out_dimension_dict, cfg.file_extension_dict, var_file_dict) ### generate wav if cfg.GENWAV: logger.info('reconstructing waveform(s)') generate_wav(gen_dir, gen_file_id_list, cfg) # generated speech # generate_wav(nn_cmp_dir, gen_file_id_list) # reference copy synthesis speech ### evaluation: calculate distortion if cfg.CALMCD: logger.info('calculating MCD') ref_data_dir = os.path.join(data_dir, 'ref_data') ref_mgc_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.mgc_ext) ref_bap_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.bap_ext) ref_lf0_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.lf0_ext) in_gen_label_align_file_list = in_label_align_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] calculator = IndividualDistortionComp() spectral_distortion = 0.0 bap_mse = 0.0 f0_mse = 0.0 vuv_error = 0.0 valid_file_id_list = file_id_list[cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number] test_file_id_list = file_id_list[ cfg.train_file_number + cfg.valid_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] if cfg.remove_silence_using_binary_labels: ## get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() ## use first feature in label -- hardcoded for now silence_feature = 0 ## Use these to trim silence: untrimmed_test_labels = binary_label_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] if 'mgc' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['mgc'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_mgc_list, cfg.mgc_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.mgc_dim, silence_pattern=cfg.silence_pattern) remover.remove_silence(in_file_list_dict['mgc'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_mgc_list) valid_spectral_distortion = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim) test_spectral_distortion = calculator.compute_distortion(test_file_id_list, ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim) valid_spectral_distortion *= (10 / numpy.log(10)) * numpy.sqrt(2.0) ##MCD test_spectral_distortion *= (10 / numpy.log(10)) * numpy.sqrt(2.0) ##MCD if 'bap' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['bap'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_bap_list, cfg.bap_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.bap_dim, silence_pattern=cfg.silence_pattern) remover.remove_silence(in_file_list_dict['bap'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_bap_list) valid_bap_mse = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim) test_bap_mse = calculator.compute_distortion(test_file_id_list, ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim) valid_bap_mse = valid_bap_mse / 10.0 test_bap_mse = test_bap_mse / 10.0 if 'lf0' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['lf0'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_lf0_list, cfg.lf0_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.lf0_dim, silence_pattern=['*-#+*']) remover.remove_silence(in_file_list_dict['lf0'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_lf0_list) valid_f0_mse, valid_f0_corr, valid_vuv_error = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim) test_f0_mse, test_f0_corr, test_vuv_error = calculator.compute_distortion(test_file_id_list, ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim) logger.info('Develop: DNN -- MCD: %.3f dB; BAP: %.3f dB; F0:- RMSE: %.3f Hz; CORR: %.3f; VUV: %.3f%%' \ % (valid_spectral_distortion, valid_bap_mse, valid_f0_mse, valid_f0_corr, valid_vuv_error * 100.)) logger.info('Test : DNN -- MCD: %.3f dB; BAP: %.3f dB; F0:- RMSE: %.3f Hz; CORR: %.3f; VUV: %.3f%%' \ % (test_spectral_distortion, test_bap_mse, test_f0_mse, test_f0_corr, test_vuv_error * 100.))
def main_function(cfg): file_paths = FilePaths(cfg) # get a logger for this main function logger = logging.getLogger("main") # get another logger to handle plotting duties plotlogger = logging.getLogger("plotting") # later, we might do this via a handler that is created, attached and configured # using the standard config mechanism of the logging module # but for now we need to do it manually plotlogger.set_plot_path(cfg.plot_dir) # create plot dir if set to True if not os.path.exists(cfg.plot_dir) and cfg.plot: os.makedirs(cfg.plot_dir) #### parameter setting######## hidden_layer_size = cfg.hyper_params['hidden_layer_size'] ####prepare environment try: file_id_list = read_file_list(cfg.file_id_scp) logger.debug('Loaded file id list from %s' % cfg.file_id_scp) except IOError: # this means that open(...) threw an error logger.critical('Could not load file id list from %s' % cfg.file_id_scp) raise ###total file number including training, development, and testing total_file_number = len(file_id_list) assert cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number == total_file_number, 'check train, valid, test file number' data_dir = cfg.data_dir inter_data_dir = cfg.inter_data_dir nn_cmp_dir = file_paths.nn_cmp_dir nn_cmp_norm_dir = file_paths.nn_cmp_norm_dir model_dir = file_paths.model_dir gen_dir = file_paths.gen_dir in_file_list_dict = {} for feature_name in list(cfg.in_dir_dict.keys()): in_file_list_dict[feature_name] = prepare_file_path_list(file_id_list, cfg.in_dir_dict[feature_name], cfg.file_extension_dict[feature_name], False) nn_cmp_file_list = file_paths.get_nn_cmp_file_list() nn_cmp_norm_file_list = file_paths.get_nn_cmp_norm_file_list() ###normalisation information norm_info_file = file_paths.norm_info_file ### normalise input full context label # currently supporting two different forms of lingustic features # later, we should generalise this assert cfg.label_style == 'HTS', 'Only HTS-style labels are now supported as input to Merlin' label_normaliser = HTSLabelNormalisation(question_file_name=cfg.question_file_name, add_frame_features=cfg.add_frame_features, subphone_feats=cfg.subphone_feats) add_feat_dim = sum(cfg.additional_features.values()) lab_dim = label_normaliser.dimension + add_feat_dim + cfg.appended_input_dim if cfg.VoiceConversion: lab_dim = cfg.cmp_dim logger.info('Input label dimension is %d' % lab_dim) suffix=str(lab_dim) if cfg.process_labels_in_work_dir: inter_data_dir = cfg.work_dir # the number can be removed file_paths.set_label_dir(label_normaliser.dimension, suffix, lab_dim) file_paths.set_label_file_list() binary_label_dir = file_paths.binary_label_dir nn_label_dir = file_paths.nn_label_dir nn_label_norm_dir = file_paths.nn_label_norm_dir in_label_align_file_list = file_paths.in_label_align_file_list binary_label_file_list = file_paths.binary_label_file_list nn_label_file_list = file_paths.nn_label_file_list nn_label_norm_file_list = file_paths.nn_label_norm_file_list min_max_normaliser = None label_norm_file = file_paths.label_norm_file test_id_list = file_paths.test_id_list if cfg.NORMLAB: # simple HTS labels logger.info('preparing label data (input) using standard HTS style labels') label_normaliser.perform_normalisation(in_label_align_file_list, binary_label_file_list, label_type=cfg.label_type) if cfg.additional_features: out_feat_file_list = file_paths.out_feat_file_list in_dim = label_normaliser.dimension for new_feature, new_feature_dim in cfg.additional_features.items(): new_feat_dir = os.path.join(data_dir, new_feature) new_feat_file_list = prepare_file_path_list(file_id_list, new_feat_dir, '.'+new_feature) merger = MergeFeat(lab_dim = in_dim, feat_dim = new_feature_dim) merger.merge_data(binary_label_file_list, new_feat_file_list, out_feat_file_list) in_dim += new_feature_dim binary_label_file_list = out_feat_file_list remover = SilenceRemover(n_cmp = lab_dim, silence_pattern = cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features = cfg.add_frame_features, subphone_feats = cfg.subphone_feats) remover.remove_silence(binary_label_file_list, in_label_align_file_list, nn_label_file_list) min_max_normaliser = MinMaxNormalisation(feature_dimension = lab_dim, min_value = 0.01, max_value = 0.99) ###use only training data to find min-max information, then apply on the whole dataset if cfg.GenTestList: min_max_normaliser.load_min_max_values(label_norm_file) else: min_max_normaliser.find_min_max_values(nn_label_file_list[0:cfg.train_file_number]) ### enforce silence such that the normalization runs without removing silence: only for final synthesis if cfg.GenTestList and cfg.enforce_silence: min_max_normaliser.normalise_data(binary_label_file_list, nn_label_norm_file_list) else: min_max_normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list) if min_max_normaliser != None and not cfg.GenTestList: ### save label normalisation information for unseen testing labels label_min_vector = min_max_normaliser.min_vector label_max_vector = min_max_normaliser.max_vector label_norm_info = numpy.concatenate((label_min_vector, label_max_vector), axis=0) label_norm_info = numpy.array(label_norm_info, 'float32') fid = open(label_norm_file, 'wb') label_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' %(label_min_vector.size, label_norm_file)) ### make output duration data if cfg.MAKEDUR: logger.info('creating duration (output) features') label_normaliser.prepare_dur_data(in_label_align_file_list, file_paths.dur_file_list, cfg.label_type, cfg.dur_feature_type) ### make output acoustic data if cfg.MAKECMP: logger.info('creating acoustic (output) features') delta_win = cfg.delta_win #[-0.5, 0.0, 0.5] acc_win = cfg.acc_win #[1.0, -2.0, 1.0] if cfg.GenTestList: for feature_name in list(cfg.in_dir_dict.keys()): in_file_list_dict[feature_name] = prepare_file_path_list(test_id_list, cfg.in_dir_dict[feature_name], cfg.file_extension_dict[feature_name], False) nn_cmp_file_list = prepare_file_path_list(test_id_list, nn_cmp_dir, cfg.cmp_ext) nn_cmp_norm_file_list = prepare_file_path_list(test_id_list, nn_cmp_norm_dir, cfg.cmp_ext) acoustic_worker = AcousticComposition(delta_win = delta_win, acc_win = acc_win) if 'dur' in list(cfg.in_dir_dict.keys()) and cfg.AcousticModel: lf0_file_list = file_paths.get_lf0_file_list() acoustic_worker.make_equal_frames(dur_file_list, lf0_file_list, cfg.in_dimension_dict) acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, cfg.in_dimension_dict, cfg.out_dimension_dict) if cfg.remove_silence_using_binary_labels: ## do this to get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim=label_composer.compute_label_dimension() silence_feature = 0 ## use first feature in label -- hardcoded for now logger.info('Silence removal from CMP using binary label file') ## overwrite the untrimmed audio with the trimmed version: trim_silence(nn_cmp_file_list, nn_cmp_file_list, cfg.cmp_dim, binary_label_file_list, lab_dim, silence_feature) elif cfg.remove_silence_using_hts_labels: ## back off to previous method using HTS labels: remover = SilenceRemover(n_cmp = cfg.cmp_dim, silence_pattern = cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features = cfg.add_frame_features, subphone_feats = cfg.subphone_feats) remover.remove_silence(nn_cmp_file_list, in_label_align_file_list, nn_cmp_file_list) # save to itself ### save acoustic normalisation information for normalising the features back var_dir = file_paths.var_dir var_file_dict = file_paths.get_var_dic() ### normalise output acoustic data if cfg.NORMCMP: logger.info('normalising acoustic (output) features using method %s' % cfg.output_feature_normalisation) cmp_norm_info = None if cfg.output_feature_normalisation == 'MVN': normaliser = MeanVarianceNorm(feature_dimension=cfg.cmp_dim) if cfg.GenTestList: # load mean std values global_mean_vector, global_std_vector = normaliser.load_mean_std_values(norm_info_file) else: ###calculate mean and std vectors on the training data, and apply on the whole dataset global_mean_vector = normaliser.compute_mean(nn_cmp_file_list[0:cfg.train_file_number], 0, cfg.cmp_dim) global_std_vector = normaliser.compute_std(nn_cmp_file_list[0:cfg.train_file_number], global_mean_vector, 0, cfg.cmp_dim) normaliser.feature_normalisation(nn_cmp_file_list, nn_cmp_norm_file_list) cmp_norm_info = numpy.concatenate((global_mean_vector, global_std_vector), axis=0) elif cfg.output_feature_normalisation == 'MINMAX': min_max_normaliser = MinMaxNormalisation(feature_dimension = cfg.cmp_dim, min_value = 0.01, max_value = 0.99) if cfg.GenTestList: min_max_normaliser.load_min_max_values(norm_info_file) else: min_max_normaliser.find_min_max_values(nn_cmp_file_list[0:cfg.train_file_number]) min_max_normaliser.normalise_data(nn_cmp_file_list, nn_cmp_norm_file_list) cmp_min_vector = min_max_normaliser.min_vector cmp_max_vector = min_max_normaliser.max_vector cmp_norm_info = numpy.concatenate((cmp_min_vector, cmp_max_vector), axis=0) else: logger.critical('Normalisation type %s is not supported!\n' %(cfg.output_feature_normalisation)) raise if not cfg.GenTestList: cmp_norm_info = numpy.array(cmp_norm_info, 'float32') fid = open(norm_info_file, 'wb') cmp_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' %(cfg.output_feature_normalisation, norm_info_file)) feature_index = 0 for feature_name in list(cfg.out_dimension_dict.keys()): feature_std_vector = numpy.array(global_std_vector[:,feature_index:feature_index+cfg.out_dimension_dict[feature_name]], 'float32') fid = open(var_file_dict[feature_name], 'w') feature_var_vector = feature_std_vector**2 feature_var_vector.tofile(fid) fid.close() logger.info('saved %s variance vector to %s' %(feature_name, var_file_dict[feature_name])) feature_index += cfg.out_dimension_dict[feature_name] train_x_file_list, train_y_file_list = file_paths.get_train_list_x_y() valid_x_file_list, valid_y_file_list = file_paths.get_valid_list_x_y() test_x_file_list, test_y_file_list = file_paths.get_test_list_x_y() # we need to know the label dimension before training the DNN # computing that requires us to look at the labels # label_normaliser = HTSLabelNormalisation(question_file_name=cfg.question_file_name, add_frame_features=cfg.add_frame_features, subphone_feats=cfg.subphone_feats) add_feat_dim = sum(cfg.additional_features.values()) lab_dim = label_normaliser.dimension + add_feat_dim + cfg.appended_input_dim if cfg.VoiceConversion: lab_dim = cfg.cmp_dim logger.info('label dimension is %d' % lab_dim) combined_model_arch = str(len(hidden_layer_size)) for hid_size in hidden_layer_size: combined_model_arch += '_' + str(hid_size) nnets_file_name = file_paths.get_nnets_file_name() temp_dir_name = file_paths.get_temp_nn_dir_name() gen_dir = os.path.join(gen_dir, temp_dir_name) if cfg.switch_to_keras: ### set configuration variables ### cfg.inp_dim = lab_dim cfg.out_dim = cfg.cmp_dim cfg.inp_feat_dir = nn_label_norm_dir cfg.out_feat_dir = nn_cmp_norm_dir cfg.pred_feat_dir = gen_dir if cfg.GenTestList and cfg.test_synth_dir!="None": cfg.inp_feat_dir = cfg.test_synth_dir cfg.pred_feat_dir = cfg.test_synth_dir ### call kerasclass and use an instance ### keras_instance = KerasClass(cfg) ### DNN model training if cfg.TRAINDNN: var_dict = load_covariance(var_file_dict, cfg.out_dimension_dict) logger.info('training DNN') fid = open(norm_info_file, 'rb') cmp_min_max = numpy.fromfile(fid, dtype=numpy.float32) fid.close() cmp_min_max = cmp_min_max.reshape((2, -1)) cmp_mean_vector = cmp_min_max[0, ] cmp_std_vector = cmp_min_max[1, ] try: os.makedirs(model_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create model directory %s' % model_dir) logger.critical(' OS error was: %s' % e.strerror) raise try: if cfg.switch_to_keras: keras_instance.train_keras_model() else: train_DNN(train_xy_file_list = (train_x_file_list, train_y_file_list), \ valid_xy_file_list = (valid_x_file_list, valid_y_file_list), \ nnets_file_name = nnets_file_name, \ n_ins = lab_dim, n_outs = cfg.cmp_dim, ms_outs = cfg.multistream_outs, \ hyper_params = cfg.hyper_params, buffer_size = cfg.buffer_size, plot = cfg.plot, var_dict = var_dict, cmp_mean_vector = cmp_mean_vector, cmp_std_vector = cmp_std_vector) except KeyboardInterrupt: logger.critical('train_DNN interrupted via keyboard') # Could 'raise' the exception further, but that causes a deep traceback to be printed # which we don't care about for a keyboard interrupt. So, just bail out immediately sys.exit(1) except: logger.critical('train_DNN threw an exception') raise if cfg.GENBNFEA: # Please only tune on this step when you want to generate bottleneck features from DNN gen_dir = file_paths.bottleneck_features bottleneck_size = min(hidden_layer_size) bottleneck_index = 0 for i in range(len(hidden_layer_size)): if hidden_layer_size[i] == bottleneck_size: bottleneck_index = i logger.info('generating bottleneck features from DNN') try: os.makedirs(gen_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create generation directory %s' % gen_dir) logger.critical(' OS error was: %s' % e.strerror) raise gen_file_id_list = file_id_list[0:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] test_x_file_list = nn_label_norm_file_list[0:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] gen_file_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.cmp_ext) dnn_hidden_generation(test_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list, bottleneck_index) ### generate parameters from DNN gen_file_id_list = file_id_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] test_x_file_list = nn_label_norm_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] if cfg.GenTestList: gen_file_id_list = test_id_list test_x_file_list = nn_label_norm_file_list if cfg.test_synth_dir!="None": gen_dir = cfg.test_synth_dir if cfg.DNNGEN: logger.info('generating from DNN') try: os.makedirs(gen_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create generation directory %s' % gen_dir) logger.critical(' OS error was: %s' % e.strerror) raise gen_file_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.cmp_ext) if cfg.switch_to_keras: keras_instance.test_keras_model() else: reshape_io = True if cfg.rnn_batch_training else False dnn_generation(test_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list, reshape_io) logger.debug('denormalising generated output using method %s' % cfg.output_feature_normalisation) fid = open(norm_info_file, 'rb') cmp_min_max = numpy.fromfile(fid, dtype=numpy.float32) fid.close() cmp_min_max = cmp_min_max.reshape((2, -1)) cmp_min_vector = cmp_min_max[0, ] cmp_max_vector = cmp_min_max[1, ] if cfg.output_feature_normalisation == 'MVN': denormaliser = MeanVarianceNorm(feature_dimension = cfg.cmp_dim) denormaliser.feature_denormalisation(gen_file_list, gen_file_list, cmp_min_vector, cmp_max_vector) elif cfg.output_feature_normalisation == 'MINMAX': denormaliser = MinMaxNormalisation(cfg.cmp_dim, min_value = 0.01, max_value = 0.99, min_vector = cmp_min_vector, max_vector = cmp_max_vector) denormaliser.denormalise_data(gen_file_list, gen_file_list) else: logger.critical('denormalising method %s is not supported!\n' %(cfg.output_feature_normalisation)) raise if cfg.AcousticModel: ##perform MLPG to smooth parameter trajectory ## lf0 is included, the output features much have vuv. generator = ParameterGeneration(gen_wav_features = cfg.gen_wav_features, enforce_silence = cfg.enforce_silence) generator.acoustic_decomposition(gen_file_list, cfg.cmp_dim, cfg.out_dimension_dict, cfg.file_extension_dict, var_file_dict, do_MLPG=cfg.do_MLPG, cfg=cfg) if cfg.DurationModel: ### Perform duration normalization(min. state dur set to 1) ### gen_dur_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.dur_ext) gen_label_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.lab_ext) in_gen_label_align_file_list = prepare_file_path_list(gen_file_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) generator = ParameterGeneration(gen_wav_features = cfg.gen_wav_features) generator.duration_decomposition(gen_file_list, cfg.cmp_dim, cfg.out_dimension_dict, cfg.file_extension_dict) label_modifier = HTSLabelModification(silence_pattern = cfg.silence_pattern, label_type = cfg.label_type) label_modifier.modify_duration_labels(in_gen_label_align_file_list, gen_dur_list, gen_label_list) ### generate wav if cfg.GENWAV: logger.info('reconstructing waveform(s)') generate_wav(gen_dir, gen_file_id_list, cfg) # generated speech # generate_wav(nn_cmp_dir, gen_file_id_list, cfg) # reference copy synthesis speech ### setting back to original conditions before calculating objective scores ### if cfg.GenTestList: in_label_align_file_list = prepare_file_path_list(file_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) binary_label_file_list = prepare_file_path_list(file_id_list, binary_label_dir, cfg.lab_ext) gen_file_id_list = file_id_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] ### evaluation: RMSE and CORR for duration if cfg.CALMCD and cfg.DurationModel: logger.info('calculating MCD') ref_data_dir = os.path.join(inter_data_dir, 'ref_data') ref_dur_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.dur_ext) in_gen_label_align_file_list = in_label_align_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] calculator = IndividualDistortionComp() valid_file_id_list = file_id_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number] test_file_id_list = file_id_list[cfg.train_file_number+cfg.valid_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['dur'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_dur_list, cfg.dur_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp = cfg.dur_dim, silence_pattern = cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features = cfg.add_frame_features) remover.remove_silence(in_file_list_dict['dur'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number], in_gen_label_align_file_list, ref_dur_list) valid_dur_rmse, valid_dur_corr = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.dur_ext, cfg.dur_dim) test_dur_rmse, test_dur_corr = calculator.compute_distortion(test_file_id_list , ref_data_dir, gen_dir, cfg.dur_ext, cfg.dur_dim) logger.info('Develop: DNN -- RMSE: %.3f frames/phoneme; CORR: %.3f; ' \ %(valid_dur_rmse, valid_dur_corr)) logger.info('Test: DNN -- RMSE: %.3f frames/phoneme; CORR: %.3f; ' \ %(test_dur_rmse, test_dur_corr)) ### evaluation: calculate distortion if cfg.CALMCD and cfg.AcousticModel: logger.info('calculating MCD') ref_data_dir = os.path.join(inter_data_dir, 'ref_data') ref_mgc_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.mgc_ext) ref_bap_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.bap_ext) ref_lf0_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.lf0_ext) in_gen_label_align_file_list = in_label_align_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] calculator = IndividualDistortionComp() spectral_distortion = 0.0 bap_mse = 0.0 f0_mse = 0.0 vuv_error = 0.0 valid_file_id_list = file_id_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number] test_file_id_list = file_id_list[cfg.train_file_number+cfg.valid_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] if cfg.remove_silence_using_binary_labels: ## get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim=label_composer.compute_label_dimension() ## use first feature in label -- hardcoded for now silence_feature = 0 ## Use these to trim silence: untrimmed_test_labels = binary_label_file_list[cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] if 'mgc' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['mgc'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_mgc_list, cfg.mgc_dim, \ untrimmed_test_labels, lab_dim, silence_feature) elif cfg.remove_silence_using_hts_labels: remover = SilenceRemover(n_cmp = cfg.mgc_dim, silence_pattern = cfg.silence_pattern, label_type=cfg.label_type) remover.remove_silence(in_file_list_dict['mgc'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number], in_gen_label_align_file_list, ref_mgc_list) else: ref_data_dir = os.path.join(data_dir, 'mgc') valid_spectral_distortion = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim) test_spectral_distortion = calculator.compute_distortion(test_file_id_list , ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim) valid_spectral_distortion *= (10 /numpy.log(10)) * numpy.sqrt(2.0) ##MCD test_spectral_distortion *= (10 /numpy.log(10)) * numpy.sqrt(2.0) ##MCD if 'bap' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['bap'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_bap_list, cfg.bap_dim, \ untrimmed_test_labels, lab_dim, silence_feature) elif cfg.remove_silence_using_hts_labels: remover = SilenceRemover(n_cmp = cfg.bap_dim, silence_pattern = cfg.silence_pattern, label_type=cfg.label_type) remover.remove_silence(in_file_list_dict['bap'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number], in_gen_label_align_file_list, ref_bap_list) else: ref_data_dir = os.path.join(data_dir, 'bap') valid_bap_mse = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim) test_bap_mse = calculator.compute_distortion(test_file_id_list , ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim) valid_bap_mse = valid_bap_mse / 10.0 ##Cassia's bap is computed from 10*log|S(w)|. if use HTS/SPTK style, do the same as MGC test_bap_mse = test_bap_mse / 10.0 ##Cassia's bap is computed from 10*log|S(w)|. if use HTS/SPTK style, do the same as MGC if 'lf0' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['lf0'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_lf0_list, cfg.lf0_dim, \ untrimmed_test_labels, lab_dim, silence_feature) elif cfg.remove_silence_using_hts_labels: remover = SilenceRemover(n_cmp = cfg.lf0_dim, silence_pattern = cfg.silence_pattern, label_type=cfg.label_type) remover.remove_silence(in_file_list_dict['lf0'][cfg.train_file_number:cfg.train_file_number+cfg.valid_file_number+cfg.test_file_number], in_gen_label_align_file_list, ref_lf0_list) else: ref_data_dir = os.path.join(data_dir, 'lf0') valid_f0_mse, valid_f0_corr, valid_vuv_error = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim) test_f0_mse , test_f0_corr, test_vuv_error = calculator.compute_distortion(test_file_id_list , ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim) logger.info('Develop: DNN -- MCD: %.3f dB; BAP: %.3f dB; F0:- RMSE: %.3f Hz; CORR: %.3f; VUV: %.3f%%' \ %(valid_spectral_distortion, valid_bap_mse, valid_f0_mse, valid_f0_corr, valid_vuv_error*100.)) logger.info('Test : DNN -- MCD: %.3f dB; BAP: %.3f dB; F0:- RMSE: %.3f Hz; CORR: %.3f; VUV: %.3f%%' \ %(test_spectral_distortion , test_bap_mse , test_f0_mse , test_f0_corr, test_vuv_error*100.))
output_list = [ datapath + 'cmp/' + item + '.cmp' for item in file_checked_ids ] output_norm_list = [ datapath + 'normed_cmp/' + item + '.cmp' for item in file_checked_ids ] return input_dict, output_list, output_norm_list if __name__ == '__main__': delta_win = [-0.5, 0.0, 0.5] acc_win = [1.0, -2.0, 1.0] acoustic_worker = AcousticComposition(delta_win=delta_win, acc_win=acc_win) for data in datalist: datapath = root + data in_file_list_dict, nn_cmp_file_list, nn_cmp_norm_file_list = make_input_output_file_list( datapath) in_dimension_dict = {'mgc': 60, 'lf0': 1, 'bap': 1} out_dimension_dict = {'mgc': 180, 'vuv': 1, 'lf0': 3, 'bap': 3} acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, in_dimension_dict, out_dimension_dict) var_dir = os.path.join(datapath, 'var') if not os.path.exists(var_dir): os.makedirs(var_dir)
def main_function(cfg, in_dir, out_dir, token_xpath, index_attrib_name, synth_mode, cmp_dir, projection_end): ## TODO: token_xpath & index_attrib_name should be in config # get a logger for this main function logger = logging.getLogger("main") # get another logger to handle plotting duties plotlogger = logging.getLogger("plotting") # later, we might do this via a handler that is created, attached and configured # but for now we need to do it manually plotlogger.set_plot_path(cfg.plot_dir) #### parameter setting######## hidden_layers_sizes = cfg.hyper_params['hidden_layers_sizes'] ####prepare environment synth_utts_input = glob.glob(in_dir + '/*.utt') ###synth_utts_input = synth_utts_input[:10] ### temp!!!!! if synth_mode == 'single_sentence_demo': synth_utts_input = synth_utts_input[:1] print() print('mode: single_sentence_demo') print(synth_utts_input) print() indexed_utt_dir = os.path.join( out_dir, 'utt' ) ## place to put test utts with tokens labelled with projection indices direcs = [out_dir, indexed_utt_dir] for direc in direcs: if not os.path.isdir(direc): os.mkdir(direc) ## was below -- see comment if synth_mode == 'single_sentence_demo': synth_utts_input = add_projection_indices_with_replicates( synth_utts_input, token_xpath, index_attrib_name, indexed_utt_dir, 100) else: add_projection_indices(synth_utts_input, token_xpath, index_attrib_name, indexed_utt_dir) file_id_list = [] for fname in synth_utts_input: junk, name = os.path.split(fname) file_id_list.append(name.replace('.utt', '')) data_dir = cfg.data_dir model_dir = os.path.join(cfg.work_dir, 'nnets_model') gen_dir = os.path.join(out_dir, 'gen') ###normalisation information norm_info_file = os.path.join( data_dir, 'norm_info' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim) + '_' + cfg.output_feature_normalisation + '.dat') ### normalise input full context label if cfg.label_style == 'HTS': sys.exit('only ossian utts supported') elif cfg.label_style == 'composed': suffix = 'composed' # the number can be removed binary_label_dir = os.path.join(out_dir, 'lab_bin') nn_label_norm_dir = os.path.join(out_dir, 'lab_bin_norm') binary_label_file_list = prepare_file_path_list(file_id_list, binary_label_dir, cfg.lab_ext) nn_label_norm_file_list = prepare_file_path_list(file_id_list, nn_label_norm_dir, cfg.lab_ext) ## need this to find normalisation info: if cfg.process_labels_in_work_dir: label_data_dir = cfg.work_dir else: label_data_dir = data_dir min_max_normaliser = None label_norm_file = 'label_norm_%s.dat' % (cfg.label_style) label_norm_file = os.path.join(label_data_dir, label_norm_file) if cfg.label_style == 'HTS': sys.exit('script not tested with HTS labels') ## always do this in synth: ## if cfg.NORMLAB and (cfg.label_style == 'composed'): logger.info('add projection indices to tokens in test utts') ## add_projection_indices was here logger.info('preparing label data (input) using "composed" style labels') label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) logger.info('Loaded label configuration') lab_dim = label_composer.compute_label_dimension() logger.info('label dimension will be %d' % lab_dim) if cfg.precompile_xpaths: label_composer.precompile_xpaths() # there are now a set of parallel input label files (e.g, one set of HTS and another set of Ossian trees) # create all the lists of these, ready to pass to the label composer in_label_align_file_list = {} for label_style, label_style_required in label_composer.label_styles.items( ): if label_style_required: logger.info( 'labels of style %s are required - constructing file paths for them' % label_style) if label_style == 'xpath': in_label_align_file_list['xpath'] = prepare_file_path_list( file_id_list, indexed_utt_dir, cfg.utt_ext, False) elif label_style == 'hts': logger.critical('script not tested with HTS labels') else: logger.critical( 'unsupported label style %s specified in label configuration' % label_style) raise Exception # now iterate through the files, one at a time, constructing the labels for them num_files = len(file_id_list) logger.info('the label styles required are %s' % label_composer.label_styles) for i in range(num_files): logger.info('making input label features for %4d of %4d' % (i + 1, num_files)) # iterate through the required label styles and open each corresponding label file # a dictionary of file descriptors, pointing at the required files required_labels = {} for label_style, label_style_required in label_composer.label_styles.items( ): # the files will be a parallel set of files for a single utterance # e.g., the XML tree and an HTS label file if label_style_required: required_labels[label_style] = open( in_label_align_file_list[label_style][i], 'r') logger.debug(' opening label file %s' % in_label_align_file_list[label_style][i]) logger.debug('label styles with open files: %s' % required_labels) label_composer.make_labels( required_labels, out_file_name=binary_label_file_list[i], fill_missing_values=cfg.fill_missing_values, iterate_over_frames=cfg.iterate_over_frames) # now close all opened files for fd in required_labels.values(): fd.close() # no silence removal for synthesis ... ## minmax norm: min_max_normaliser = math_statis.Statis( feature_dimension=lab_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file, exclude_columns=[cfg.index_to_project]) (min_vector, max_vector) = retrieve_normalisation_values(label_norm_file) min_max_normaliser.min_vector = min_vector min_max_normaliser.max_vector = max_vector ### apply precompuated and stored min-max to the whole dataset min_max_normaliser.normalise_data(binary_label_file_list, nn_label_norm_file_list) ### DEBUG if synth_mode == 'inferred': ## set up paths -- write CMP data to infer from in outdir: nn_cmp_dir = os.path.join( out_dir, 'nn' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) nn_cmp_norm_dir = os.path.join( out_dir, 'nn_norm' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) in_file_list_dict = {} for feature_name in list(cfg.in_dir_dict.keys()): in_direc = os.path.join(cmp_dir, feature_name) assert os.path.isdir(in_direc), in_direc in_file_list_dict[feature_name] = prepare_file_path_list( file_id_list, in_direc, cfg.file_extension_dict[feature_name], False) nn_cmp_file_list = prepare_file_path_list(file_id_list, nn_cmp_dir, cfg.cmp_ext) nn_cmp_norm_file_list = prepare_file_path_list(file_id_list, nn_cmp_norm_dir, cfg.cmp_ext) ### make output acoustic data # if cfg.MAKECMP: logger.info('creating acoustic (output) features') delta_win = [-0.5, 0.0, 0.5] acc_win = [1.0, -2.0, 1.0] acoustic_worker = AcousticComposition(delta_win=delta_win, acc_win=acc_win) acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, cfg.in_dimension_dict, cfg.out_dimension_dict) ## skip silence removal for inference -- need to match labels, which are ## not silence removed either ### retrieve acoustic normalisation information for normalising the features back var_dir = os.path.join(data_dir, 'var') var_file_dict = {} for feature_name in list(cfg.out_dimension_dict.keys()): var_file_dict[feature_name] = os.path.join( var_dir, feature_name + '_' + str(cfg.out_dimension_dict[feature_name])) ### normalise output acoustic data # if cfg.NORMCMP: #### DEBUG if synth_mode == 'inferred': logger.info('normalising acoustic (output) features using method %s' % cfg.output_feature_normalisation) cmp_norm_info = None if cfg.output_feature_normalisation == 'MVN': # normaliser = MeanVarianceNorm(feature_dimension=cfg.cmp_dim) read_func = file_util.load_binary_file_frame() normaliser = Statis(feature_dimension=cfg.cmp_dim, read_func=load_binary_file_frame, writer_func=file_util.array_to_binary_file) (mean_vector, std_vector) = retrieve_normalisation_values(norm_info_file) normaliser.mean_vector = mean_vector normaliser.std_vector = std_vector ### apply precompuated and stored mean and std to the whole dataset normaliser.feature_normalisation(nn_cmp_file_list, nn_cmp_norm_file_list) elif cfg.output_feature_normalisation == 'MINMAX': sys.exit('not implemented') # min_max_normaliser = MinMaxNormalisation(feature_dimension = cfg.cmp_dim) # global_mean_vector = min_max_normaliser.compute_mean(nn_cmp_file_list[0:cfg.train_file_number]) # global_std_vector = min_max_normaliser.compute_std(nn_cmp_file_list[0:cfg.train_file_number], global_mean_vector) # min_max_normaliser = MinMaxNormalisation(feature_dimension = cfg.cmp_dim, min_value = 0.01, max_value = 0.99) # min_max_normaliser.find_min_max_values(nn_cmp_file_list[0:cfg.train_file_number]) # min_max_normaliser.normalise_data(nn_cmp_file_list, nn_cmp_norm_file_list) # cmp_min_vector = min_max_normaliser.min_vector # cmp_max_vector = min_max_normaliser.max_vector # cmp_norm_info = numpy.concatenate((cmp_min_vector, cmp_max_vector), axis=0) else: logger.critical('Normalisation type %s is not supported!\n' % (cfg.output_feature_normalisation)) raise combined_model_arch = str(len(hidden_layers_sizes)) for hid_size in hidden_layers_sizes: combined_model_arch += '_' + str(hid_size) nnets_file_name = '%s/%s_%s_%d_%s_%d.%d.train.%d.model' \ % (model_dir, cfg.model_type, cfg.combined_feature_name, int(cfg.multistream_switch), combined_model_arch, lab_dim, cfg.cmp_dim, cfg.train_file_number) ### DNN model training # if cfg.TRAINDNN: always do this in synth #### DEBUG inferred_weights = None ## default, for non-inferring synth methods if synth_mode == 'inferred': ## infer control values from TESTING data ## identical lists (our test data) for 'train' and 'valid' -- this is just to ## keep the infer_projections_fn theano function happy -- operates on ## validation set. 'Train' set shouldn't be used here. train_x_file_list = copy.copy(nn_label_norm_file_list) train_y_file_list = copy.copy(nn_cmp_norm_file_list) valid_x_file_list = copy.copy(nn_label_norm_file_list) valid_y_file_list = copy.copy(nn_cmp_norm_file_list) print('FILELIST for inferr:') print(train_x_file_list) print() try: inferred_weights = infer_projections(train_xy_file_list=(train_x_file_list, train_y_file_list), \ valid_xy_file_list=(valid_x_file_list, valid_y_file_list), \ nnets_file_name=nnets_file_name, \ n_ins=lab_dim, n_outs=cfg.cmp_dim, ms_outs=cfg.multistream_outs, \ hyper_params=cfg.hyper_params, buffer_size=cfg.buffer_size, plot=cfg.plot) except KeyboardInterrupt: logger.critical('train_DNN interrupted via keyboard') # Could 'raise' the exception further, but that causes a deep traceback to be printed # which we don't care about for a keyboard interrupt. So, just bail out immediately sys.exit(1) except: logger.critical('train_DNN threw an exception') raise ## if cfg.DNNGEN: logger.info('generating from DNN') try: os.makedirs(gen_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create generation directory %s' % gen_dir) logger.critical(' OS error was: %s' % e.strerror) raise gen_file_list = prepare_file_path_list(file_id_list, gen_dir, cfg.cmp_ext) # print nn_label_norm_file_list ## <-- this WAS mangled in inferred due to copying of file list to trainlist_x etc. which is then shuffled. Now use copy.copy # print gen_file_list weights_outfile = os.path.join(out_dir, 'projection_weights_for_synth.txt') dnn_generation_PROJECTION(nn_label_norm_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list, cfg=cfg, synth_mode=synth_mode, projection_end=projection_end, projection_weights_to_use=inferred_weights, save_weights_to_file=weights_outfile) logger.debug('denormalising generated output using method %s' % cfg.output_feature_normalisation) ## DNNGEN fid = open(norm_info_file, 'rb') cmp_min_max = numpy.fromfile(fid, dtype=numpy.float32) fid.close() cmp_min_max = cmp_min_max.reshape((2, -1)) cmp_min_vector = cmp_min_max[0, ] cmp_max_vector = cmp_min_max[1, ] denormaliser = math_statis.Statis( feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file) if cfg.output_feature_normalisation == 'MVN': denormaliser.feature_denormalisation(gen_file_list, gen_file_list, cmp_min_vector, cmp_max_vector) elif cfg.output_feature_normalisation == 'MINMAX': denormaliser = math_statis.Statis( feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file, min_value=0.01, max_value=0.99, min_vector=cmp_min_vector, max_vector=cmp_max_vector) denormaliser.denormalise_data(gen_file_list, gen_file_list) else: logger.critical('denormalising method %s is not supported!\n' % (cfg.output_feature_normalisation)) raise ##perform MLPG to smooth parameter trajectory ## lf0 is included, the output features much have vuv. generator = ParameterGeneration(gen_wav_features=cfg.gen_wav_features) generator.acoustic_decomposition(gen_file_list, cfg.cmp_dim, cfg.out_dimension_dict, cfg.file_extension_dict, var_file_dict) ## osw: skip MLPG: # split_cmp(gen_file_list, ['mgc', 'lf0', 'bap'], cfg.cmp_dim, cfg.out_dimension_dict, cfg.file_extension_dict) ## Variance scaling: scaled_dir = gen_dir + '_scaled' simple_scale_variance(gen_dir, scaled_dir, var_file_dict, cfg.out_dimension_dict, file_id_list, gv_weight=0.5) ## gv_weight hardcoded ### generate wav ---- glottHMM only!!! # if cfg.GENWAV: logger.info('reconstructing waveform(s)') generate_wav_glottHMM(scaled_dir, file_id_list) # generated speech
def data_prep(cfg, label_normaliser): lab_dim = 0 label_data_dir = 0 in_label_align_file_list = 0 binary_label_file_list = 0 data_dir =0 suffix =0 nn_label_file_list=0 nn_label_norm_file_list=0 binary_label_dir = 0 nn_label_dir = 0 dur_file_list = 0 min_max_normaliser = None label_norm_file = 'label_norm_%s_%d.dat' % (cfg.label_style, lab_dim) label_norm_file = os.path.join(label_data_dir, label_norm_file) # Collect file path lists for TEST set (label_align, binary_label, nn_label, nn_label_norm) if cfg.GenTestList: try: test_id_list = read_file_list(cfg.test_id_scp) logger.debug('Loaded file id list from %s' % cfg.test_id_scp) except IOError: # this means that open(...) threw an error logger.critical('Could not load file id list from %s' % cfg.test_id_scp) raise in_label_align_file_list = prepare_file_path_list(test_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) binary_label_file_list = prepare_file_path_list(test_id_list, binary_label_dir, cfg.lab_ext) nn_label_file_list = prepare_file_path_list(test_id_list, nn_label_dir, cfg.lab_ext) nn_label_norm_file_list = prepare_file_path_list(test_id_list, nn_label_norm_dir, cfg.lab_ext) if cfg.NORMLAB and (cfg.label_style == 'HTS'): # simple HTS labels logger.info('preparing label data (input) using standard HTS style labels') label_normaliser.perform_normalisation(in_label_align_file_list, binary_label_file_list, label_type=cfg.label_type) if cfg.additional_features: out_feat_dir = os.path.join(data_dir, 'binary_label_' + suffix) out_feat_file_list = prepare_file_path_list(file_id_list, out_feat_dir, cfg.lab_ext) in_dim = label_normaliser.dimension for new_feature, new_feature_dim in cfg.additional_features.items(): new_feat_dir = os.path.join(data_dir, new_feature) new_feat_file_list = prepare_file_path_list(file_id_list, new_feat_dir, '.' + new_feature) merger = MergeFeat(lab_dim=in_dim, feat_dim=new_feature_dim) merger.merge_data(binary_label_file_list, new_feat_file_list, out_feat_file_list) in_dim += new_feature_dim binary_label_file_list = out_feat_file_list remover = SilenceRemover(n_cmp=lab_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features=cfg.add_frame_features, subphone_feats=cfg.subphone_feats) remover.remove_silence(binary_label_file_list, in_label_align_file_list, nn_label_file_list) min_max_normaliser = MinMaxNormalisation(feature_dimension=lab_dim, min_value=0.01, max_value=0.99) # use only training data to find min-max information, then apply on the whole dataset if cfg.GenTestList: min_max_normaliser.load_min_max_values(label_norm_file) else: min_max_normaliser.find_min_max_values(nn_label_file_list[0:cfg.train_file_number]) # enforce silence such that the normalization runs without removing silence: only for final synthesis if cfg.GenTestList and cfg.enforce_silence: min_max_normaliser.normalise_data(binary_label_file_list, nn_label_norm_file_list) else: min_max_normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list) # save label normalisation information for unseen testing labels if min_max_normaliser is not None and not cfg.GenTestList: label_min_vector = min_max_normaliser.min_vector label_max_vector = min_max_normaliser.max_vector label_norm_info = np.concatenate((label_min_vector, label_max_vector), axis=0) label_norm_info = np.array(label_norm_info, 'float32') fid = open(label_norm_file, 'wb') label_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' % (label_min_vector.size, label_norm_file)) ### make output duration data if cfg.MAKEDUR: logger.info('creating duration (output) features') label_type = cfg.label_type feature_type = cfg.dur_feature_type label_normaliser.prepare_dur_data(in_label_align_file_list, dur_file_list, label_type, feature_type) ### make output acoustic data if cfg.MAKECMP: logger.info('creating acoustic (output) features') delta_win = cfg.delta_win # [-0.5, 0.0, 0.5] acc_win = cfg.acc_win # [1.0, -2.0, 1.0] acoustic_worker = AcousticComposition(delta_win=delta_win, acc_win=acc_win) if 'dur' in list(cfg.in_dir_dict.keys()) and cfg.AcousticModel: acoustic_worker.make_equal_frames(dur_file_list, lf0_file_list, cfg.in_dimension_dict) acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, cfg.in_dimension_dict, cfg.out_dimension_dict) if cfg.remove_silence_using_binary_labels: ## do this to get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() silence_feature = 0 ## use first feature in label -- hardcoded for now logger.info('Silence removal from CMP using binary label file') ## overwrite the untrimmed audio with the trimmed version: trim_silence(nn_cmp_file_list, nn_cmp_file_list, cfg.cmp_dim, binary_label_file_list, lab_dim, silence_feature) else: ## back off to previous method using HTS labels: remover = SilenceRemover(n_cmp=cfg.cmp_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features=cfg.add_frame_features, subphone_feats=cfg.subphone_feats) remover.remove_silence(nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number], in_label_align_file_list[0:cfg.train_file_number + cfg.valid_file_number], nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number]) # save to itself
def main_function_synth(cfg, dnn_model): # get a logger for this main function logger = logging.getLogger("main") # get another logger to handle plotting duties plotlogger = logging.getLogger("plotting") # later, we might do this via a handler that is created, attached and configured # using the standard config mechanism of the logging module # but for now we need to do it manually plotlogger.set_plot_path(cfg.plot_dir) #### parameter setting######## hidden_layer_size = cfg.hyper_params['hidden_layer_size'] ####prepare environment try: file_id_list = read_file_list(cfg.file_id_scp) logger.debug('Loaded file id list from %s' % cfg.file_id_scp) except IOError: # this means that open(...) threw an error logger.critical('Could not load file id list from %s' % cfg.file_id_scp) raise ###total file number including training, development, and testing total_file_number = len(file_id_list) data_dir = cfg.data_dir nn_cmp_dir = os.path.join( data_dir, 'nn' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) nn_cmp_norm_dir = os.path.join( data_dir, 'nn_norm' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) #model_dir = os.path.join(cfg.work_dir, 'nnets_model') gen_dir = os.path.join(cfg.work_dir, 'gen') in_file_list_dict = {} for feature_name in cfg.in_dir_dict.keys(): in_file_list_dict[feature_name] = prepare_file_path_list( file_id_list, cfg.in_dir_dict[feature_name], cfg.file_extension_dict[feature_name], False) nn_cmp_file_list = prepare_file_path_list(file_id_list, nn_cmp_dir, cfg.cmp_ext) nn_cmp_norm_file_list = prepare_file_path_list(file_id_list, nn_cmp_norm_dir, cfg.cmp_ext) ###normalisation information norm_info_file = os.path.join( data_dir, 'norm_info' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim) + '_' + cfg.output_feature_normalisation + '.dat') ### normalise input full context label # currently supporting two different forms of lingustic features # later, we should generalise this if cfg.label_style == 'HTS': label_normaliser = HTSLabelNormalisation( question_file_name=cfg.question_file_name, add_frame_features=cfg.add_frame_features, subphone_feats=cfg.subphone_feats) add_feat_dim = sum(cfg.additional_features.values()) lab_dim = label_normaliser.dimension + add_feat_dim + cfg.appended_input_dim logger.info('Input label dimension is %d' % lab_dim) suffix = str(lab_dim) # no longer supported - use new "composed" style labels instead elif cfg.label_style == 'composed': # label_normaliser = XMLLabelNormalisation(xpath_file_name=cfg.xpath_file_name) suffix = 'composed' dnn_generation if cfg.process_labels_in_work_dir: label_data_dir = cfg.work_dir else: label_data_dir = data_dir # the number can be removed binary_label_dir = os.path.join( label_data_dir, 'binary_label_' + str(label_normaliser.dimension)) nn_label_dir = os.path.join(label_data_dir, 'nn_no_silence_lab_' + suffix) nn_label_norm_dir = os.path.join(label_data_dir, 'nn_no_silence_lab_norm_' + suffix) in_label_align_file_list = prepare_file_path_list(file_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) binary_label_file_list = prepare_file_path_list(file_id_list, binary_label_dir, cfg.lab_ext) nn_label_file_list = prepare_file_path_list(file_id_list, nn_label_dir, cfg.lab_ext) nn_label_norm_file_list = prepare_file_path_list(file_id_list, nn_label_norm_dir, cfg.lab_ext) dur_file_list = prepare_file_path_list(file_id_list, cfg.in_dur_dir, cfg.dur_ext) lf0_file_list = prepare_file_path_list(file_id_list, cfg.in_lf0_dir, cfg.lf0_ext) # to do - sanity check the label dimension here? min_max_normaliser = None label_norm_file = 'label_norm_%s_%d.dat' % (cfg.label_style, lab_dim) label_norm_file = os.path.join(label_data_dir, label_norm_file) if cfg.GenTestList: try: test_id_list = read_file_list(cfg.test_id_scp) logger.debug('Loaded file id list from %s' % cfg.test_id_scp) except IOError: # this means that open(...) threw an error logger.critical('Could not load file id list from %s' % cfg.test_id_scp) raise in_label_align_file_list = prepare_file_path_list( test_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) binary_label_file_list = prepare_file_path_list( test_id_list, binary_label_dir, cfg.lab_ext) nn_label_file_list = prepare_file_path_list(test_id_list, nn_label_dir, cfg.lab_ext) nn_label_norm_file_list = prepare_file_path_list( test_id_list, nn_label_norm_dir, cfg.lab_ext) if cfg.NORMLAB and (cfg.label_style == 'HTS'): # simple HTS labels logger.info( 'preparing label data (input) using standard HTS style labels') label_normaliser.perform_normalisation(in_label_align_file_list, binary_label_file_list, label_type=cfg.label_type) if cfg.additional_features: out_feat_dir = os.path.join(data_dir, 'binary_label_' + suffix) out_feat_file_list = prepare_file_path_list( file_id_list, out_feat_dir, cfg.lab_ext) in_dim = label_normaliser.dimension for new_feature, new_feature_dim in cfg.additional_features.iteritems( ): new_feat_dir = os.path.join(data_dir, new_feature) new_feat_file_list = prepare_file_path_list( file_id_list, new_feat_dir, '.' + new_feature) merger = MergeFeat(lab_dim=in_dim, feat_dim=new_feature_dim) merger.merge_data(binary_label_file_list, new_feat_file_list, out_feat_file_list) in_dim += new_feature_dim binary_label_file_list = out_feat_file_list remover = SilenceRemover(n_cmp=lab_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features=cfg.add_frame_features, subphone_feats=cfg.subphone_feats) remover.remove_silence(binary_label_file_list, in_label_align_file_list, nn_label_file_list) min_max_normaliser = MinMaxNormalisation(feature_dimension=lab_dim, min_value=0.01, max_value=0.99) ###use only training data to find min-max information, then apply on the whole dataset if cfg.GenTestList: min_max_normaliser.load_min_max_values(label_norm_file) else: min_max_normaliser.find_min_max_values( nn_label_file_list[0:cfg.train_file_number]) ### enforce silence such that the normalization runs without removing silence: only for final synthesis if cfg.GenTestList and cfg.enforce_silence: min_max_normaliser.normalise_data(binary_label_file_list, nn_label_norm_file_list) else: min_max_normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list) if cfg.NORMLAB and (cfg.label_style == 'composed'): # new flexible label preprocessor logger.info( 'preparing label data (input) using "composed" style labels') label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) logger.info('Loaded label configuration') # logger.info('%s' % label_composer.configuration.labels ) lab_dim = label_composer.compute_label_dimension() logger.info('label dimension will be %d' % lab_dim) if cfg.precompile_xpaths: label_composer.precompile_xpaths() # there are now a set of parallel input label files (e.g, one set of HTS and another set of Ossian trees) # create all the lists of these, ready to pass to the label composer in_label_align_file_list = {} for label_style, label_style_required in label_composer.label_styles.iteritems( ): if label_style_required: logger.info( 'labels of style %s are required - constructing file paths for them' % label_style) if label_style == 'xpath': in_label_align_file_list['xpath'] = prepare_file_path_list( file_id_list, cfg.xpath_label_align_dir, cfg.utt_ext, False) elif label_style == 'hts': in_label_align_file_list['hts'] = prepare_file_path_list( file_id_list, cfg.hts_label_align_dir, cfg.lab_ext, False) else: logger.critical( 'unsupported label style %s specified in label configuration' % label_style) raise Exception # now iterate through the files, one at a time, constructing the labels for them num_files = len(file_id_list) logger.info('the label styles required are %s' % label_composer.label_styles) for i in xrange(num_files): logger.info('making input label features for %4d of %4d' % (i + 1, num_files)) # iterate through the required label styles and open each corresponding label file # a dictionary of file descriptors, pointing at the required files required_labels = {} for label_style, label_style_required in label_composer.label_styles.iteritems( ): # the files will be a parallel set of files for a single utterance # e.g., the XML tree and an HTS label file if label_style_required: required_labels[label_style] = open( in_label_align_file_list[label_style][i], 'r') logger.debug(' opening label file %s' % in_label_align_file_list[label_style][i]) logger.debug('label styles with open files: %s' % required_labels) label_composer.make_labels( required_labels, out_file_name=binary_label_file_list[i], fill_missing_values=cfg.fill_missing_values, iterate_over_frames=cfg.iterate_over_frames) # now close all opened files for fd in required_labels.itervalues(): fd.close() # silence removal if cfg.remove_silence_using_binary_labels: silence_feature = 0 ## use first feature in label -- hardcoded for now logger.info( 'Silence removal from label using silence feature: %s' % (label_composer.configuration.labels[silence_feature])) logger.info('Silence will be removed from CMP files in same way') ## Binary labels have 2 roles: both the thing trimmed and the instructions for trimming: trim_silence(binary_label_file_list, nn_label_file_list, lab_dim, \ binary_label_file_list, lab_dim, silence_feature) else: logger.info('No silence removal done') # start from the labels we have just produced, not trimmed versions nn_label_file_list = binary_label_file_list min_max_normaliser = MinMaxNormalisation(feature_dimension=lab_dim, min_value=0.01, max_value=0.99) ###use only training data to find min-max information, then apply on the whole dataset min_max_normaliser.find_min_max_values( nn_label_file_list[0:cfg.train_file_number]) min_max_normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list) if min_max_normaliser != None and not cfg.GenTestList: ### save label normalisation information for unseen testing labels label_min_vector = min_max_normaliser.min_vector label_max_vector = min_max_normaliser.max_vector label_norm_info = numpy.concatenate( (label_min_vector, label_max_vector), axis=0) label_norm_info = numpy.array(label_norm_info, 'float32') fid = open(label_norm_file, 'wb') label_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' % (label_min_vector.size, label_norm_file)) ### make output duration data if cfg.MAKEDUR: logger.info('creating duration (output) features') label_type = cfg.label_type feature_type = cfg.dur_feature_type label_normaliser.prepare_dur_data(in_label_align_file_list, dur_file_list, label_type, feature_type) ### make output acoustic data if cfg.MAKECMP: logger.info('creating acoustic (output) features') delta_win = cfg.delta_win #[-0.5, 0.0, 0.5] acc_win = cfg.acc_win #[1.0, -2.0, 1.0] acoustic_worker = AcousticComposition(delta_win=delta_win, acc_win=acc_win) if 'dur' in cfg.in_dir_dict.keys() and cfg.AcousticModel: acoustic_worker.make_equal_frames(dur_file_list, lf0_file_list, cfg.in_dimension_dict) acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, cfg.in_dimension_dict, cfg.out_dimension_dict) if cfg.remove_silence_using_binary_labels: ## do this to get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() silence_feature = 0 ## use first feature in label -- hardcoded for now logger.info('Silence removal from CMP using binary label file') ## overwrite the untrimmed audio with the trimmed version: trim_silence(nn_cmp_file_list, nn_cmp_file_list, cfg.cmp_dim, binary_label_file_list, lab_dim, silence_feature) else: ## back off to previous method using HTS labels: remover = SilenceRemover( n_cmp=cfg.cmp_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features=cfg.add_frame_features, subphone_feats=cfg.subphone_feats) remover.remove_silence( nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number], in_label_align_file_list[0:cfg.train_file_number + cfg.valid_file_number], nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number]) # save to itself ### save acoustic normalisation information for normalising the features back var_dir = os.path.join(data_dir, 'var') if not os.path.exists(var_dir): os.makedirs(var_dir) var_file_dict = {} for feature_name in cfg.out_dimension_dict.keys(): var_file_dict[feature_name] = os.path.join( var_dir, feature_name + '_' + str(cfg.out_dimension_dict[feature_name])) ### normalise output acoustic data if cfg.NORMCMP: logger.info('normalising acoustic (output) features using method %s' % cfg.output_feature_normalisation) cmp_norm_info = None if cfg.output_feature_normalisation == 'MVN': normaliser = MeanVarianceNorm(feature_dimension=cfg.cmp_dim) ###calculate mean and std vectors on the training data, and apply on the whole dataset global_mean_vector = normaliser.compute_mean( nn_cmp_file_list[0:cfg.train_file_number], 0, cfg.cmp_dim) global_std_vector = normaliser.compute_std( nn_cmp_file_list[0:cfg.train_file_number], global_mean_vector, 0, cfg.cmp_dim) normaliser.feature_normalisation( nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number], nn_cmp_norm_file_list[0:cfg.train_file_number + cfg.valid_file_number]) cmp_norm_info = numpy.concatenate( (global_mean_vector, global_std_vector), axis=0) elif cfg.output_feature_normalisation == 'MINMAX': min_max_normaliser = MinMaxNormalisation( feature_dimension=cfg.cmp_dim) global_mean_vector = min_max_normaliser.compute_mean( nn_cmp_file_list[0:cfg.train_file_number]) global_std_vector = min_max_normaliser.compute_std( nn_cmp_file_list[0:cfg.train_file_number], global_mean_vector) min_max_normaliser = MinMaxNormalisation( feature_dimension=cfg.cmp_dim, min_value=0.01, max_value=0.99) min_max_normaliser.find_min_max_values( nn_cmp_file_list[0:cfg.train_file_number]) min_max_normaliser.normalise_data(nn_cmp_file_list, nn_cmp_norm_file_list) cmp_min_vector = min_max_normaliser.min_vector cmp_max_vector = min_max_normaliser.max_vector cmp_norm_info = numpy.concatenate((cmp_min_vector, cmp_max_vector), axis=0) else: logger.critical('Normalisation type %s is not supported!\n' % (cfg.output_feature_normalisation)) raise cmp_norm_info = numpy.array(cmp_norm_info, 'float32') fid = open(norm_info_file, 'wb') cmp_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' % (cfg.output_feature_normalisation, norm_info_file)) feature_index = 0 for feature_name in cfg.out_dimension_dict.keys(): feature_std_vector = numpy.array( global_std_vector[:, feature_index:feature_index + cfg.out_dimension_dict[feature_name]], 'float32') fid = open(var_file_dict[feature_name], 'w') feature_var_vector = feature_std_vector**2 feature_var_vector.tofile(fid) fid.close() logger.info('saved %s variance vector to %s' % (feature_name, var_file_dict[feature_name])) feature_index += cfg.out_dimension_dict[feature_name] train_x_file_list = nn_label_norm_file_list[0:cfg.train_file_number] train_y_file_list = nn_cmp_norm_file_list[0:cfg.train_file_number] valid_x_file_list = nn_label_norm_file_list[cfg.train_file_number:cfg. train_file_number + cfg.valid_file_number] valid_y_file_list = nn_cmp_norm_file_list[cfg.train_file_number:cfg. train_file_number + cfg.valid_file_number] test_x_file_list = nn_label_norm_file_list[ cfg.train_file_number + cfg.valid_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] test_y_file_list = nn_cmp_norm_file_list[ cfg.train_file_number + cfg.valid_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] ### generate parameters from DNN temp_dir_name = '%s_%s_%d_%d_%d_%d_%d_%d_%d' \ %(cfg.combined_model_name, cfg.combined_feature_name, int(cfg.do_post_filtering), \ cfg.train_file_number, lab_dim, cfg.cmp_dim, \ len(hidden_layer_size), hidden_layer_size[0], hidden_layer_size[-1]) gen_dir = os.path.join(gen_dir, temp_dir_name) gen_file_id_list = file_id_list[cfg. train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] test_x_file_list = nn_label_norm_file_list[cfg.train_file_number:cfg. train_file_number + cfg.valid_file_number + cfg.test_file_number] if cfg.GenTestList: gen_file_id_list = test_id_list test_x_file_list = nn_label_norm_file_list ### comment the below line if you don't want the files in a separate folder gen_dir = cfg.test_synth_dir if cfg.DNNGEN: logger.info('generating from DNN') try: os.makedirs(gen_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create generation directory %s' % gen_dir) logger.critical(' OS error was: %s' % e.strerror) raise gen_file_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.cmp_ext) #dnn_generation(test_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list) dnn_generation_yuhao(test_x_file_list, dnn_model, lab_dim, cfg.cmp_dim, gen_file_list) logger.debug('denormalising generated output using method %s' % cfg.output_feature_normalisation) fid = open(norm_info_file, 'rb') cmp_min_max = numpy.fromfile(fid, dtype=numpy.float32) fid.close() cmp_min_max = cmp_min_max.reshape((2, -1)) cmp_min_vector = cmp_min_max[0, ] cmp_max_vector = cmp_min_max[1, ] if cfg.output_feature_normalisation == 'MVN': denormaliser = MeanVarianceNorm(feature_dimension=cfg.cmp_dim) denormaliser.feature_denormalisation(gen_file_list, gen_file_list, cmp_min_vector, cmp_max_vector) elif cfg.output_feature_normalisation == 'MINMAX': denormaliser = MinMaxNormalisation(cfg.cmp_dim, min_value=0.01, max_value=0.99, min_vector=cmp_min_vector, max_vector=cmp_max_vector) denormaliser.denormalise_data(gen_file_list, gen_file_list) else: logger.critical('denormalising method %s is not supported!\n' % (cfg.output_feature_normalisation)) raise if cfg.AcousticModel: ##perform MLPG to smooth parameter trajectory ## lf0 is included, the output features much have vuv. generator = ParameterGeneration( gen_wav_features=cfg.gen_wav_features, enforce_silence=cfg.enforce_silence) generator.acoustic_decomposition(gen_file_list, cfg.cmp_dim, cfg.out_dimension_dict, cfg.file_extension_dict, var_file_dict, do_MLPG=cfg.do_MLPG, cfg=cfg) if cfg.DurationModel: ### Perform duration normalization(min. state dur set to 1) ### gen_dur_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.dur_ext) gen_label_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.lab_ext) in_gen_label_align_file_list = prepare_file_path_list( gen_file_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) generator = ParameterGeneration( gen_wav_features=cfg.gen_wav_features) generator.duration_decomposition(gen_file_list, cfg.cmp_dim, cfg.out_dimension_dict, cfg.file_extension_dict) label_modifier = HTSLabelModification( silence_pattern=cfg.silence_pattern, label_type=cfg.label_type) label_modifier.modify_duration_labels(in_gen_label_align_file_list, gen_dur_list, gen_label_list) ### generate wav if cfg.GENWAV: logger.info('reconstructing waveform(s)') generate_wav(gen_dir, gen_file_id_list, cfg) # generated speech # generate_wav(nn_cmp_dir, gen_file_id_list, cfg) # reference copy synthesis speech ### setting back to original conditions before calculating objective scores ### if cfg.GenTestList: in_label_align_file_list = prepare_file_path_list( file_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) binary_label_file_list = prepare_file_path_list( file_id_list, binary_label_dir, cfg.lab_ext) gen_file_id_list = file_id_list[cfg.train_file_number:cfg. train_file_number + cfg.valid_file_number + cfg.test_file_number] ### evaluation: RMSE and CORR for duration if cfg.CALMCD and cfg.DurationModel: logger.info('calculating MCD') ref_data_dir = os.path.join(data_dir, 'ref_data') ref_dur_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.dur_ext) in_gen_label_align_file_list = in_label_align_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] calculator = IndividualDistortionComp() valid_file_id_list = file_id_list[cfg.train_file_number:cfg. train_file_number + cfg.valid_file_number] test_file_id_list = file_id_list[cfg.train_file_number + cfg.valid_file_number:cfg. train_file_number + cfg.valid_file_number + cfg.test_file_number] if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict[ 'dur'][cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_dur_list, cfg.dur_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover( n_cmp=cfg.dur_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type, remove_frame_features=cfg.add_frame_features) remover.remove_silence( in_file_list_dict['dur'] [cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_dur_list) valid_dur_rmse, valid_dur_corr = calculator.compute_distortion( valid_file_id_list, ref_data_dir, gen_dir, cfg.dur_ext, cfg.dur_dim) test_dur_rmse, test_dur_corr = calculator.compute_distortion( test_file_id_list, ref_data_dir, gen_dir, cfg.dur_ext, cfg.dur_dim) logger.info('Develop: DNN -- RMSE: %.3f frames/phoneme; CORR: %.3f; ' \ %(valid_dur_rmse, valid_dur_corr)) logger.info('Test: DNN -- RMSE: %.3f frames/phoneme; CORR: %.3f; ' \ %(test_dur_rmse, test_dur_corr)) ### evaluation: calculate distortion if cfg.CALMCD and cfg.AcousticModel: logger.info('calculating MCD') ref_data_dir = os.path.join(data_dir, 'ref_data') ref_mgc_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.mgc_ext) ref_bap_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.bap_ext) ref_lf0_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.lf0_ext) in_gen_label_align_file_list = in_label_align_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] calculator = IndividualDistortionComp() spectral_distortion = 0.0 bap_mse = 0.0 f0_mse = 0.0 vuv_error = 0.0 valid_file_id_list = file_id_list[cfg.train_file_number:cfg. train_file_number + cfg.valid_file_number] test_file_id_list = file_id_list[cfg.train_file_number + cfg.valid_file_number:cfg. train_file_number + cfg.valid_file_number + cfg.test_file_number] if cfg.remove_silence_using_binary_labels: ## get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() ## use first feature in label -- hardcoded for now silence_feature = 0 ## Use these to trim silence: untrimmed_test_labels = binary_label_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] if cfg.in_dimension_dict.has_key('mgc'): if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict[ 'mgc'][cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_mgc_list, cfg.mgc_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.mgc_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type) remover.remove_silence( in_file_list_dict['mgc'] [cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_mgc_list) valid_spectral_distortion = calculator.compute_distortion( valid_file_id_list, ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim) test_spectral_distortion = calculator.compute_distortion( test_file_id_list, ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim) valid_spectral_distortion *= (10 / numpy.log(10)) * numpy.sqrt( 2.0) ##MCD test_spectral_distortion *= (10 / numpy.log(10)) * numpy.sqrt( 2.0) ##MCD if cfg.in_dimension_dict.has_key('bap'): if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict[ 'bap'][cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_bap_list, cfg.bap_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.bap_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type) remover.remove_silence( in_file_list_dict['bap'] [cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_bap_list) valid_bap_mse = calculator.compute_distortion( valid_file_id_list, ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim) test_bap_mse = calculator.compute_distortion( test_file_id_list, ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim) valid_bap_mse = valid_bap_mse / 10.0 ##Cassia's bap is computed from 10*log|S(w)|. if use HTS/SPTK style, do the same as MGC test_bap_mse = test_bap_mse / 10.0 ##Cassia's bap is computed from 10*log|S(w)|. if use HTS/SPTK style, do the same as MGC if cfg.in_dimension_dict.has_key('lf0'): if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict[ 'lf0'][cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_lf0_list, cfg.lf0_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.lf0_dim, silence_pattern=cfg.silence_pattern, label_type=cfg.label_type) remover.remove_silence( in_file_list_dict['lf0'] [cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_lf0_list) valid_f0_mse, valid_f0_corr, valid_vuv # if gnp._boardId is not None: # import gpu_lock # gpu_lock.free_lock(gnp._boardId)_error = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim) test_f0_mse, test_f0_corr, test_vuv_error = calculator.compute_distortion( test_file_id_list, ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim) logger.info('Develop: DNN -- MCD: %.3f dB; BAP: %.3f dB; F0:- RMSE: %.3f Hz; CORR: %.3f; VUV: %.3f%%' \ %(valid_spectral_distortion, valid_bap_mse, valid_f0_mse, valid_f0_corr, valid_vuv_error*100.)) logger.info('Test : DNN -- MCD: %.3f dB; BAP: %.3f dB; F0:- RMSE: %.3f Hz; CORR: %.3f; VUV: %.3f%%' \ %(test_spectral_distortion , test_bap_mse , test_f0_mse , test_f0_corr, test_vuv_error*100.))