class NNDurationModel(NN): ## assume single stream, with 1 output = with n elements for n states of 1 phone def __init__(self, model_dir, question_file_name): super(NNDurationModel, self).__init__(model_dir) #self.label_expander = HTSLabelNormalisation(question_file_name=question_file_name, add_frame_features=False, subphone_feats='none') # , label_type='phone_align') self.label_expander = HTSDurationLabelNormalisation( question_file_name=question_file_name) def generate(self, htk_label_file, enforce_silence=False, mlpg=True, vuv_thresh=0.5, fzero_scale=1.0): input = self.label_expander.load_labels_with_state_alignment( htk_label_file) output = self.predict(input) ## as these are state durations in frames, enforce integer valued output, values greater than 0: output = numpy.round(output) output[output < 1] = 1 output = numpy.array(output, dtype='int') return output
def main_function(cfg, outdir, model_pickle_file=None): hidden_layer_size = cfg.hyper_params['hidden_layer_size'] data_dir = cfg.data_dir model_dir = os.path.join(cfg.work_dir, 'nnets_model') # norm_info_file = os.path.join(data_dir, 'norm_info' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim) + '_' + cfg.output_feature_normalisation + '.dat') ### normalise input full context label if cfg.label_style == 'HTS': label_normaliser = HTSLabelNormalisation( question_file_name=cfg.question_file_name) lab_dim = label_normaliser.dimension + cfg.appended_input_dim print(('Input label dimension is %d' % lab_dim)) suffix = str(lab_dim) elif cfg.label_style == 'HTS_duration': label_normaliser = HTSDurationLabelNormalisation( question_file_name=cfg.question_file_name) lab_dim = label_normaliser.dimension ## + cfg.appended_input_dim print(('Input label dimension is %d' % lab_dim)) suffix = str(lab_dim) # no longer supported - use new "composed" style labels instead elif cfg.label_style == 'composed': # label_normaliser = XMLLabelNormalisation(xpath_file_name=cfg.xpath_file_name) suffix = 'composed' combined_model_arch = str(len(hidden_layer_size)) for hid_size in hidden_layer_size: combined_model_arch += '_' + str(hid_size) ## if made with run_lstm:-- ''' nnets_file_name = '%s/%s_%s_%d_%s_%d.%d.train.%d.%f.rnn.model' \ %(model_dir, cfg.combined_model_name, cfg.combined_feature_name, int(cfg.multistream_switch), combined_model_arch, lab_dim, cfg.cmp_dim, cfg.train_file_number, cfg.hyper_params['learning_rate']) ''' ## if made with run_dnn:-- nnets_file_name = '%s/%s_%s_%d_%s_%d.%d.train.%d.model' \ %(model_dir, cfg.model_type, cfg.combined_feature_name, int(cfg.multistream_switch), combined_model_arch, lab_dim, cfg.cmp_dim, cfg.train_file_number) ## override the name computed from config variables if model_pickle_file specified: if model_pickle_file != None: nnets_file_name = model_pickle_file print('store DNN') store_network(nnets_file_name, outdir)
def main_function(cfg): # get a logger for this main function logger = logging.getLogger("main") # get another logger to handle plotting duties plotlogger = logging.getLogger("plotting") # later, we might do this via a handler that is created, attached and configured # using the standard config mechanism of the logging module # but for now we need to do it manually plotlogger.set_plot_path(cfg.plot_dir) #### parameter setting######## hidden_layers_sizes = cfg.hyper_params['hidden_layer_size'] ####prepare environment try: file_id_list = read_file_list(cfg.file_id_scp) logger.debug('Loaded file id list from %s' % cfg.file_id_scp) except IOError: # this means that open(...) threw an error logger.critical('Could not load file id list from %s' % cfg.file_id_scp) raise ###total file number including training, development, and testing total_file_number = len(file_id_list) data_dir = cfg.data_dir nn_cmp_dir = os.path.join(data_dir, 'nn' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) nn_cmp_nosil_dir = os.path.join(data_dir, 'nn_nosil' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) nn_cmp_norm_dir = os.path.join(data_dir, 'nn_norm' + cfg.combined_feature_name + '_' + str(cfg.cmp_dim)) model_dir = os.path.join(cfg.work_dir, 'nnets_model') gen_dir = os.path.join(cfg.work_dir, 'gen') in_file_list_dict = {} for feature_name in list(cfg.in_dir_dict.keys()): in_file_list_dict[feature_name] = prepare_file_path_list(file_id_list, cfg.in_dir_dict[feature_name], cfg.file_extension_dict[feature_name], False) nn_cmp_file_list = prepare_file_path_list(file_id_list, nn_cmp_dir, cfg.cmp_ext) nn_cmp_nosil_file_list = prepare_file_path_list(file_id_list, nn_cmp_nosil_dir, cfg.cmp_ext) nn_cmp_norm_file_list = prepare_file_path_list(file_id_list, nn_cmp_norm_dir, cfg.cmp_ext) ###normalisation information norm_info_file = os.path.join(data_dir, 'norm_info' + cfg.combined_feature_name + '_' + str( cfg.cmp_dim) + '_' + cfg.output_feature_normalisation + '.dat') ### normalise input full context label # currently supporting two different forms of lingustic features # later, we should generalise this if cfg.label_style == 'HTS': label_normaliser = HTSLabelNormalisation(question_file_name=cfg.question_file_name) lab_dim = label_normaliser.dimension + cfg.appended_input_dim logger.info('Input label dimension is %d' % lab_dim) suffix = str(lab_dim) elif cfg.label_style == 'HTS_duration': label_normaliser = HTSDurationLabelNormalisation(question_file_name=cfg.question_file_name) lab_dim = label_normaliser.dimension ## + cfg.appended_input_dim logger.info('Input label dimension is %d' % lab_dim) suffix = str(lab_dim) # no longer supported - use new "composed" style labels instead elif cfg.label_style == 'composed': # label_normaliser = XMLLabelNormalisation(xpath_file_name=cfg.xpath_file_name) suffix = 'composed' if cfg.process_labels_in_work_dir: label_data_dir = cfg.work_dir else: label_data_dir = data_dir # the number can be removed binary_label_dir = os.path.join(label_data_dir, 'binary_label_' + suffix) nn_label_dir = os.path.join(label_data_dir, 'nn_no_silence_lab_' + suffix) nn_label_norm_dir = os.path.join(label_data_dir, 'nn_no_silence_lab_norm_' + suffix) # nn_label_norm_mvn_dir = os.path.join(data_dir, 'nn_no_silence_lab_norm_'+suffix) in_label_align_file_list = prepare_file_path_list(file_id_list, cfg.in_label_align_dir, cfg.lab_ext, False) binary_label_file_list = prepare_file_path_list(file_id_list, binary_label_dir, cfg.lab_ext) nn_label_file_list = prepare_file_path_list(file_id_list, nn_label_dir, cfg.lab_ext) nn_label_norm_file_list = prepare_file_path_list(file_id_list, nn_label_norm_dir, cfg.lab_ext) # to do - sanity check the label dimension here? min_max_normaliser = None label_norm_file = 'label_norm_%s.dat' % (cfg.label_style) label_norm_file = os.path.join(label_data_dir, label_norm_file) normaliser = math_statis.Statis(feature_dimension=lab_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file, min_value=0.01, max_value=0.99) if cfg.NORMLAB and (cfg.label_style in ['HTS', 'HTS_duration']): # simple HTS labels logger.info('preparing label data (input) using standard HTS style labels') label_normaliser.perform_normalisation(in_label_align_file_list, binary_label_file_list) if cfg.label_style == 'HTS': remover = SilenceRemover(n_cmp=lab_dim, silence_pattern=cfg.silence_pattern) remover.remove_silence(binary_label_file_list, in_label_align_file_list, nn_label_file_list) elif cfg.label_style == 'HTS_duration': ## don't remove silences for duration nn_label_file_list = binary_label_file_list ###use only training data to find min-max information, then apply on the whole dataset normaliser.find_min_max_values(nn_label_file_list[0:cfg.train_file_number]) normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list) if cfg.NORMLAB and (cfg.label_style == 'composed'): # new flexible label preprocessor logger.info('preparing label data (input) using "composed" style labels') label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) logger.info('Loaded label configuration') # logger.info('%s' % label_composer.configuration.labels ) lab_dim = label_composer.compute_label_dimension() logger.info('label dimension will be %d' % lab_dim) if cfg.precompile_xpaths: label_composer.precompile_xpaths() # there are now a set of parallel input label files (e.g, one set of HTS and another set of Ossian trees) # create all the lists of these, ready to pass to the label composer in_label_align_file_list = {} for label_style, label_style_required in label_composer.label_styles.items(): if label_style_required: logger.info('labels of style %s are required - constructing file paths for them' % label_style) if label_style == 'xpath': in_label_align_file_list['xpath'] = prepare_file_path_list(file_id_list, cfg.xpath_label_align_dir, cfg.utt_ext, False) elif label_style == 'hts': in_label_align_file_list['hts'] = prepare_file_path_list(file_id_list, cfg.hts_label_align_dir, cfg.lab_ext, False) else: logger.critical('unsupported label style %s specified in label configuration' % label_style) raise Exception # now iterate through the files, one at a time, constructing the labels for them num_files = len(file_id_list) logger.info('the label styles required are %s' % label_composer.label_styles) for i in range(num_files): logger.info('making input label features for %4d of %4d' % (i + 1, num_files)) # iterate through the required label styles and open each corresponding label file # a dictionary of file descriptors, pointing at the required files required_labels = {} for label_style, label_style_required in label_composer.label_styles.items(): # the files will be a parallel set of files for a single utterance # e.g., the XML tree and an HTS label file if label_style_required: required_labels[label_style] = open(in_label_align_file_list[label_style][i], 'r') logger.debug(' opening label file %s' % in_label_align_file_list[label_style][i]) logger.debug('label styles with open files: %s' % required_labels) label_composer.make_labels(required_labels, out_file_name=binary_label_file_list[i], fill_missing_values=cfg.fill_missing_values, iterate_over_frames=cfg.iterate_over_frames) # now close all opened files for fd in required_labels.values(): fd.close() # silence removal if cfg.remove_silence_using_binary_labels: silence_feature = 0 ## use first feature in label -- hardcoded for now logger.info('Silence removal from label using silence feature: %s' % ( label_composer.configuration.labels[silence_feature])) logger.info('Silence will be removed from CMP files in same way') ## Binary labels have 2 roles: both the thing trimmed and the instructions for trimming: trim_silence(binary_label_file_list, nn_label_file_list, lab_dim, \ binary_label_file_list, lab_dim, silence_feature, percent_to_keep=5) else: logger.info('No silence removal done') # start from the labels we have just produced, not trimmed versions nn_label_file_list = binary_label_file_list ###use only training data to find min-max information, then apply on the whole dataset normaliser.find_min_max_values(nn_label_file_list[0:cfg.train_file_number]) normaliser.normalise_data(nn_label_file_list, nn_label_norm_file_list) if normaliser != None: ### save label normalisation information for unseen testing labels label_min_vector = normaliser.min_vector label_max_vector = normaliser.max_vector label_norm_info = numpy.concatenate((label_min_vector, label_max_vector), axis=0) label_norm_info = numpy.array(label_norm_info, 'float32') fid = open(label_norm_file, 'wb') label_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' % (label_min_vector.size, label_norm_file)) ### make output acoustic data if cfg.MAKECMP: logger.info('creating acoustic (output) features') delta_win = cfg.delta_win # [-0.5, 0.0, 0.5] acc_win = cfg.acc_win # [1.0, -2.0, 1.0] acoustic_worker = AcousticComposition(delta_win=delta_win, acc_win=acc_win) acoustic_worker.prepare_nn_data(in_file_list_dict, nn_cmp_file_list, cfg.in_dimension_dict, cfg.out_dimension_dict) if cfg.label_style == 'HTS': if cfg.remove_silence_using_binary_labels: ## do this to get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() silence_feature = 0 ## use first feature in label -- hardcoded for now logger.info('Silence removal from CMP using binary label file') ## overwrite the untrimmed audio with the trimmed version: trim_silence(nn_cmp_file_list, nn_cmp_nosil_file_list, cfg.cmp_dim, binary_label_file_list, lab_dim, silence_feature) else: ## back off to previous method using HTS labels: remover = SilenceRemover(n_cmp=cfg.cmp_dim, silence_pattern=cfg.silence_pattern) remover.remove_silence(nn_cmp_file_list[0:cfg.train_file_number + cfg.valid_file_number], in_label_align_file_list[0:cfg.train_file_number + cfg.valid_file_number], nn_cmp_nosil_file_list[ 0:cfg.train_file_number + cfg.valid_file_number]) # save to itself elif cfg.label_style == 'HTS_duration': ## don't remove silences for duration nn_cmp_nosil_file_list = nn_cmp_file_list pass ### save acoustic normalisation information for normalising the features back var_dir = os.path.join(data_dir, 'var') if not os.path.exists(var_dir): os.makedirs(var_dir) var_file_dict = {} for feature_name in list(cfg.out_dimension_dict.keys()): var_file_dict[feature_name] = os.path.join(var_dir, feature_name + '_' + str(cfg.out_dimension_dict[feature_name])) ### normalise output acoustic data if cfg.NORMCMP: logger.info('normalising acoustic (output) features using method %s' % cfg.output_feature_normalisation) cmp_norm_info = None normaliser = math_statis.Statis(feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file) if cfg.output_feature_normalisation == 'MVN': ###calculate mean and std vectors on the training data, and apply on the whole dataset global_mean_vector = normaliser.compute_mean(nn_cmp_nosil_file_list[0:cfg.train_file_number], 0, cfg.cmp_dim) global_std_vector = normaliser.compute_std(nn_cmp_nosil_file_list[0:cfg.train_file_number], global_mean_vector, 0, cfg.cmp_dim) normaliser.feature_normalisation(nn_cmp_nosil_file_list[0:cfg.train_file_number + cfg.valid_file_number], nn_cmp_norm_file_list[0:cfg.train_file_number + cfg.valid_file_number]) cmp_norm_info = numpy.concatenate((global_mean_vector, global_std_vector), axis=0) elif cfg.output_feature_normalisation == 'MINMAX': global_mean_vector = normaliser.compute_mean(nn_cmp_nosil_file_list[0:cfg.train_file_number]) global_std_vector = normaliser.compute_std(nn_cmp_nosil_file_list[0:cfg.train_file_number], global_mean_vector) normaliser = math_statis.Statis(feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file, min_value=0.01, max_value=0.99) # min_max_normaliser = MinMaxNormalisation(feature_dimension=cfg.cmp_dim, min_value=0.01, max_value=0.99) normaliser.find_min_max_values(nn_cmp_nosil_file_list[0:cfg.train_file_number]) normaliser.normalise_data(nn_cmp_nosil_file_list, nn_cmp_norm_file_list) cmp_min_vector = normaliser.min_vector cmp_max_vector = normaliser.max_vector cmp_norm_info = numpy.concatenate((cmp_min_vector, cmp_max_vector), axis=0) else: logger.critical('Normalisation type %s is not supported!\n' % (cfg.output_feature_normalisation)) raise cmp_norm_info = numpy.array(cmp_norm_info, 'float32') fid = open(norm_info_file, 'wb') cmp_norm_info.tofile(fid) fid.close() logger.info('saved %s vectors to %s' % (cfg.output_feature_normalisation, norm_info_file)) # logger.debug(' value was\n%s' % cmp_norm_info) feature_index = 0 for feature_name in list(cfg.out_dimension_dict.keys()): feature_std_vector = numpy.array( global_std_vector[:, feature_index:feature_index + cfg.out_dimension_dict[feature_name]], 'float32') fid = open(var_file_dict[feature_name], 'w') feature_std_vector.tofile(fid) fid.close() logger.info('saved %s variance vector to %s' % (feature_name, var_file_dict[feature_name])) # logger.debug(' value was\n%s' % feature_std_vector) feature_index += cfg.out_dimension_dict[feature_name] train_x_file_list = nn_label_norm_file_list[0:cfg.train_file_number] train_y_file_list = nn_cmp_norm_file_list[0:cfg.train_file_number] valid_x_file_list = nn_label_norm_file_list[cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number] valid_y_file_list = nn_cmp_norm_file_list[cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number] test_x_file_list = nn_label_norm_file_list[ cfg.train_file_number + cfg.valid_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] test_y_file_list = nn_cmp_norm_file_list[ cfg.train_file_number + cfg.valid_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] # we need to know the label dimension before training the DNN # computing that requires us to look at the labels # # currently, there are two ways to do this if cfg.label_style == 'HTS': label_normaliser = HTSLabelNormalisation(question_file_name=cfg.question_file_name) lab_dim = label_normaliser.dimension + cfg.appended_input_dim elif cfg.label_style == 'composed': label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() logger.info('label dimension is %d' % lab_dim) combined_model_arch = str(len(hidden_layers_sizes)) for hid_size in hidden_layers_sizes: combined_model_arch += '_' + str(hid_size) nnets_file_name = '%s/%s_%s_%d_%s_%d.%d.train.%d.model' \ % (model_dir, cfg.model_type, cfg.combined_feature_name, int(cfg.multistream_switch), combined_model_arch, lab_dim, cfg.cmp_dim, cfg.train_file_number) ### DNN model training if cfg.TRAINDNN: logger.info('training DNN') try: os.makedirs(model_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create model directory %s' % model_dir) logger.critical(' OS error was: %s' % e.strerror) raise try: # print 'start DNN' train_DNN(train_xy_file_list=(train_x_file_list, train_y_file_list), \ valid_xy_file_list=(valid_x_file_list, valid_y_file_list), \ nnets_file_name=nnets_file_name, \ n_ins=lab_dim, n_outs=cfg.cmp_dim, ms_outs=cfg.multistream_outs, \ hyper_params=cfg.hyper_params, buffer_size=cfg.buffer_size, plot=cfg.plot) except KeyboardInterrupt: logger.critical('train_DNN interrupted via keyboard') # Could 'raise' the exception further, but that causes a deep traceback to be printed # which we don't care about for a keyboard interrupt. So, just bail out immediately sys.exit(1) except: logger.critical('train_DNN threw an exception') raise ### generate parameters from DNN temp_dir_name = '%s_%s_%d_%d_%d_%d_%d_%d' \ % (cfg.model_type, cfg.combined_feature_name, int(cfg.do_post_filtering), \ cfg.train_file_number, lab_dim, cfg.cmp_dim, \ len(hidden_layers_sizes), hidden_layers_sizes[0]) gen_dir = os.path.join(gen_dir, temp_dir_name) gen_file_id_list = file_id_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] test_x_file_list = nn_label_norm_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] if cfg.DNNGEN: logger.info('generating from DNN') try: os.makedirs(gen_dir) except OSError as e: if e.errno == errno.EEXIST: # not an error - just means directory already exists pass else: logger.critical('Failed to create generation directory %s' % gen_dir) logger.critical(' OS error was: %s' % e.strerror) raise gen_file_list = prepare_file_path_list(gen_file_id_list, gen_dir, cfg.cmp_ext) # dnn_generation(valid_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list) dnn_generation(test_x_file_list, nnets_file_name, lab_dim, cfg.cmp_dim, gen_file_list) logger.debug('denormalising generated output using method %s' % cfg.output_feature_normalisation) fid = open(norm_info_file, 'rb') cmp_min_max = numpy.fromfile(fid, dtype=numpy.float32) fid.close() cmp_min_max = cmp_min_max.reshape((2, -1)) cmp_min_vector = cmp_min_max[0,] cmp_max_vector = cmp_min_max[1,] denormaliser = math_statis.Statis(feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file) if cfg.output_feature_normalisation == 'MVN' denormaliser.feature_denormalisation(gen_file_list, gen_file_list, cmp_min_vector, cmp_max_vector) elif cfg.output_feature_normalisation == 'MINMAX': denormaliser = math_statis.Statis(feature_dimension=cfg.cmp_dim, read_func=file_util.load_binary_file_frame, writer_func=file_util.array_to_binary_file, min_value=0.01, max_value=0.99, min_vector=cmp_min_vector, max_vector=cmp_max_vector) denormaliser.denormalise_data(gen_file_list, gen_file_list) else: logger.critical('denormalising method %s is not supported!\n' % (cfg.output_feature_normalisation)) raise ##perform MLPG to smooth parameter trajectory ## lf0 is included, the output features much have vuv. generator = ParameterGeneration(gen_wav_features=cfg.gen_wav_features) generator.acoustic_decomposition(gen_file_list, cfg.cmp_dim, cfg.out_dimension_dict, cfg.file_extension_dict, var_file_dict) ### generate wav if cfg.GENWAV: logger.info('reconstructing waveform(s)') generate_wav(gen_dir, gen_file_id_list, cfg) # generated speech # generate_wav(nn_cmp_dir, gen_file_id_list) # reference copy synthesis speech ### evaluation: calculate distortion if cfg.CALMCD: logger.info('calculating MCD') ref_data_dir = os.path.join(data_dir, 'ref_data') ref_mgc_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.mgc_ext) ref_bap_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.bap_ext) ref_lf0_list = prepare_file_path_list(gen_file_id_list, ref_data_dir, cfg.lf0_ext) in_gen_label_align_file_list = in_label_align_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] calculator = IndividualDistortionComp() spectral_distortion = 0.0 bap_mse = 0.0 f0_mse = 0.0 vuv_error = 0.0 valid_file_id_list = file_id_list[cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number] test_file_id_list = file_id_list[ cfg.train_file_number + cfg.valid_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] if cfg.remove_silence_using_binary_labels: ## get lab_dim: label_composer = LabelComposer() label_composer.load_label_configuration(cfg.label_config_file) lab_dim = label_composer.compute_label_dimension() ## use first feature in label -- hardcoded for now silence_feature = 0 ## Use these to trim silence: untrimmed_test_labels = binary_label_file_list[ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] if 'mgc' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['mgc'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_mgc_list, cfg.mgc_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.mgc_dim, silence_pattern=cfg.silence_pattern) remover.remove_silence(in_file_list_dict['mgc'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_mgc_list) valid_spectral_distortion = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim) test_spectral_distortion = calculator.compute_distortion(test_file_id_list, ref_data_dir, gen_dir, cfg.mgc_ext, cfg.mgc_dim) valid_spectral_distortion *= (10 / numpy.log(10)) * numpy.sqrt(2.0) ##MCD test_spectral_distortion *= (10 / numpy.log(10)) * numpy.sqrt(2.0) ##MCD if 'bap' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['bap'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_bap_list, cfg.bap_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.bap_dim, silence_pattern=cfg.silence_pattern) remover.remove_silence(in_file_list_dict['bap'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_bap_list) valid_bap_mse = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim) test_bap_mse = calculator.compute_distortion(test_file_id_list, ref_data_dir, gen_dir, cfg.bap_ext, cfg.bap_dim) valid_bap_mse = valid_bap_mse / 10.0 test_bap_mse = test_bap_mse / 10.0 if 'lf0' in cfg.in_dimension_dict: if cfg.remove_silence_using_binary_labels: untrimmed_reference_data = in_file_list_dict['lf0'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number] trim_silence(untrimmed_reference_data, ref_lf0_list, cfg.lf0_dim, \ untrimmed_test_labels, lab_dim, silence_feature) else: remover = SilenceRemover(n_cmp=cfg.lf0_dim, silence_pattern=['*-#+*']) remover.remove_silence(in_file_list_dict['lf0'][ cfg.train_file_number:cfg.train_file_number + cfg.valid_file_number + cfg.test_file_number], in_gen_label_align_file_list, ref_lf0_list) valid_f0_mse, valid_f0_corr, valid_vuv_error = calculator.compute_distortion(valid_file_id_list, ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim) test_f0_mse, test_f0_corr, test_vuv_error = calculator.compute_distortion(test_file_id_list, ref_data_dir, gen_dir, cfg.lf0_ext, cfg.lf0_dim) logger.info('Develop: DNN -- MCD: %.3f dB; BAP: %.3f dB; F0:- RMSE: %.3f Hz; CORR: %.3f; VUV: %.3f%%' \ % (valid_spectral_distortion, valid_bap_mse, valid_f0_mse, valid_f0_corr, valid_vuv_error * 100.)) logger.info('Test : DNN -- MCD: %.3f dB; BAP: %.3f dB; F0:- RMSE: %.3f Hz; CORR: %.3f; VUV: %.3f%%' \ % (test_spectral_distortion, test_bap_mse, test_f0_mse, test_f0_corr, test_vuv_error * 100.))
def __init__(self, model_dir, question_file_name): super(NNDurationModel, self).__init__(model_dir) #self.label_expander = HTSLabelNormalisation(question_file_name=question_file_name, add_frame_features=False, subphone_feats='none') # , label_type='phone_align') self.label_expander = HTSDurationLabelNormalisation( question_file_name=question_file_name)