filename = 'https://github.com/staedi/nCOV-summary/raw/master/time_series_covid19.csv' ################################################################ # Header and preprocessing # Set Title st.title('Covid-19 News and Dashboard') # Initial data load update_status = st.markdown("Loading infections data...") covid = generic.read_dataset(filename) update_status.markdown('Load complete!') ################################################################ # Sidebar section sel_region, sel_country, chosen_stat, sel_map = frontend.display_sidebar(covid) ################################################################ # Main section update_status.markdown("Finding top districts...") cand = generic.set_candidates(covid, sel_region, sel_country, chosen_stat) update_status.markdown("Calculation complete!") update_status.markdown("Drawing charts") if sel_map: update_status.markdown("Drawing charts & maps...") else: update_status.markdown("Drawing charts...") frontend.show_stats(covid, sel_region, sel_country, chosen_stat, cand, sel_map) update_status.markdown("Job Complete!")
################################################################ # Header and preprocessing # Set Title st.title('Greater Seoul area Subway usages') # Preset data load for sidebar display update_status = st.markdown("Loading raw data...") data = generic.preprocess(file_path['data'], [file_list['raw'], file_list['map']], line_mapping, color_set) update_status.markdown('Load complete!') ################################################################ # Sidebar section (Supersector, Region and Year of interest) min_date, max_date = frontend.display_sidebar(data) ################################################################ # Main section # Display chart and map # frontend.show_chart(merged_data,weights[int(sel_focus[0])]) frontend.animate_maps(data, color_set, min_date, max_date) # Caption for credits st.subheader('Credits') data_source = 'Seoul Metropolitan Government OpenData' st.write('Data source: ' + data_source) st.write('Map provider: Mapbox, OpenStreetMap')
################################################################ # Header and preprocessing # Set Title st.title('US metro-areas princing power comparison') # Preset data load for sidebar display # update_status = st.markdown("Loading infections data...") # supersector sm_presets = generic.read_dataset(file_path['sm'],presets_file['sm']) cpi_presets = generic.read_dataset(file_path['cpi'],presets_file['cpi']) # update_status.markdown('Load complete!') ################################################################ # Sidebar section (Supersector, Region and Year of interest) sel_sector, sel_year, sel_limit, sel_focus = frontend.display_sidebar(sm_presets) ################################################################ # Main section if sel_sector != 'Choose one': ## Preprocessing steps # Employment data employments = generic.preprocess_data('sm',file_path['sm'],sm_dict[sel_sector],sel_year,sm_presets) # CPI data inflations = generic.preprocess_data('cpi',file_path['cpi'],cpi_dict[2],sel_year,cpi_presets) # Merge two datasets merged_data = generic.merge_dataset('merge',employments,inflations) # Calculating employment ranks