from frovedis.dataframe.df import FrovedisDataframe FrovedisServer.initialize("mpirun -np 2 {}".format( os.environ['FROVEDIS_SERVER'])) data = { 'A': [10, 12, 13, 15], 'B': [10.23, 12.20, 34.90, 100.12], 'C': ['male', 'female', 'female', 'male'], } pdf = pd.DataFrame(data) df = FrovedisDataframe(pdf) print(pdf) print row_mat = df.to_frovedis_rowmajor_matrix(['A', 'B'], dtype=np.float64) print(row_mat.to_numpy_matrix()) print #col_mat = df.to_frovedis_colmajor_matrix(['A', 'B'], dtype=np.float64) #print (col_mat.to_numpy_matrix()) crs_mat, info = df.to_frovedis_crs_matrix(['A', 'B', 'C'], ['C'], need_info=True) crs_mat.debug_print() print data2 = { 'A': [12, 13], 'B': [34.56, 78.9], 'C': ['male', 'male'],
'one': [10, 12, 13, 15], 'two': [10.23, 12.20, 34.90, 100.12], 'three': ['F', 'F', 'D', 'A'], 'four': [0, 0, 1, 2] } pdf = pd.DataFrame(data) print(pdf.describe()) print("\n") df = FrovedisDataframe(pdf) print(df.describe()) print("\n") # prints count, mean, std, sum, min, max # matrix conversion demo df.show() row_mat = df.to_frovedis_rowmajor_matrix(['one', 'two'], dtype=np.float64) row_mat.debug_print() col_mat = df.to_frovedis_colmajor_matrix(['one', 'two']) # default dtype = float32 col_mat.debug_print() crs_mat, info = df.to_frovedis_crs_matrix( ['one', 'two', 'four'], ['four'], need_info=True) # default dtype = float32 crs_mat.debug_print() crs_mat2 = df.to_frovedis_crs_matrix_using_info(info) crs_mat2.debug_print() df.release()