def move(self, src, dst, **kwds): if self.getmeta("atomic.rename", False): if kwds.get("overwrite", False) or not self.exists(dst): try: self.rename(src, dst) return except FSError: pass FS.move(self, src, dst, **kwds)
def move(self, src, dst, **kwds): if self.getmeta("atomic.rename",False): if kwds.get("overwrite",False) or not self.exists(dst): try: self.rename(src,dst) return except FSError: pass FS.move(self, src, dst, **kwds)
def _preprocess_images(base_fs, output_fs: FS, split): fname = "{}-image-tmp".format(split) result_path = output_fs.getsyspath(fname) batch_size = 32 img_ds = RawImageDataset(base_fs, split) dataloader = data.DataLoader(img_ds, batch_size=batch_size, num_workers=2) result_size = (len(img_ds), 1024, 14, 14) result = np.memmap(result_path, np.float32, "w+", shape=result_size) resnet = get_resnet().to(config.torch_device()) with torch.no_grad(): progbar = tqdm(dataloader, desc="Preprocessing images -- {}".format(split)) for ix, img in enumerate(progbar): img = resnet(img.to(config.torch_device())).cpu().numpy() result[ix * batch_size:(ix + 1) * batch_size] = img output_fs.move(fname, "{}-image".format(split), True)
def move(self, src, dst, **kwds): FS.move(self,src,dst,**kwds) path = relpath(normpath(src)) with self._size_lock: self._file_sizes.pop(path,None)
def move(self, src, dst, **kwds): FS.move(self, src, dst, **kwds) path = relpath(normpath(src)) with self._size_lock: self._file_sizes.pop(path, None)