def __init__(self, cfg): """ Args: cfg (CfgNode): """ # Assume these objects must be constructed in this order. model = self.build_model(cfg) optimizer = self.build_optimizer(cfg, model) data_loader = self.build_train_loader(cfg) # For training, wrap with DDP. But don't need this for inference. if comm.get_world_size() > 1: model = DistributedDataParallel(model, device_ids=[comm.get_local_rank()], broadcast_buffers=False, find_unused_parameters=True) super().__init__(model, data_loader, optimizer) self.scheduler = self.build_lr_scheduler(cfg, optimizer) # Assume no other objects need to be checkpointed. # We can later make it checkpoint the stateful hooks self.checkpointer = DetectionCheckpointer( # Assume you want to save checkpoints together with logs/statistics model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=self.scheduler, ) self.start_iter = 0 self.max_iter = cfg.SOLVER.MAX_ITER self.cfg = cfg self.register_hooks(self.build_hooks())
class Tester: def __init__(self, cfg): self.cfg = cfg self.model = Trainer.build_model(cfg) self.check_pointer = DetectionCheckpointer(self.model, save_dir=cfg.OUTPUT_DIR) self.best_res = None self.best_file = None self.all_res = {} def test(self, ckpt): self.check_pointer._load_model(self.check_pointer._load_file(ckpt)) print('evaluating checkpoint {}'.format(ckpt)) res = Trainer.test(self.cfg, self.model) if comm.is_main_process(): verify_results(self.cfg, res) print(res) if (self.best_res is None) or ( self.best_res is not None and self.best_res['bbox']['AP'] < res['bbox']['AP']): self.best_res = res self.best_file = ckpt print('best results from checkpoint {}'.format(self.best_file)) print(self.best_res) self.all_res["best_file"] = self.best_file self.all_res["best_res"] = self.best_res self.all_res[ckpt] = res os.makedirs(os.path.join(self.cfg.OUTPUT_DIR, 'inference'), exist_ok=True) with open( os.path.join(self.cfg.OUTPUT_DIR, 'inference', 'all_res.json'), 'w') as fp: json.dump(self.all_res, fp)
def __init__(self, cfg): self.cfg = cfg self.model = Trainer.build_model(cfg) self.check_pointer = DetectionCheckpointer(self.model, save_dir=cfg.OUTPUT_DIR) self.best_res = None self.best_file = None self.all_res = {}
def __init__(self, cfg): self.cfg = cfg.clone() # cfg can be modified by model self.model = build_model(self.cfg) self.model.eval() self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0]) checkpointer = DetectionCheckpointer(self.model) checkpointer.load(cfg.MODEL.WEIGHTS) self.transform_gen = T.ResizeShortestEdge( [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST) self.input_format = cfg.INPUT.FORMAT assert self.input_format in ["RGB", "BGR"], self.input_format
def get(config_path, trained: bool = False): """ Get a model specified by relative path under FsDet's official ``configs/`` directory. Args: config_path (str): config file name relative to FsDet's "configs/" directory, e.g., "COCO-detection/faster_rcnn_R_101_FPN_ft_all_1shot.yaml" trained (bool): If True, will initialize the model with the trained model zoo weights. If False, the checkpoint specified in the config file's ``MODEL.WEIGHTS`` is used instead; this will typically (though not always) initialize a subset of weights using an ImageNet pre-trained model, while randomly initializing the other weights. Example: .. code-block:: python from fsdet import model_zoo model = model_zoo.get("COCO-detection/faster_rcnn_R_101_FPN_ft_all_1shot.yaml", trained=True) """ cfg_file = get_config_file(config_path) cfg = get_cfg() cfg.merge_from_file(cfg_file) if trained: cfg.MODEL.WEIGHTS = get_checkpoint_url(config_path) if not torch.cuda.is_available(): cfg.MODEL.DEVICE = "cpu" model = build_model(cfg) DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) return model
def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) if args.eval_iter != -1: # load checkpoint at specified iteration ckpt_file = os.path.join( cfg.OUTPUT_DIR, 'model_{:07d}.pth'.format(args.eval_iter - 1)) resume = False else: # load checkpoint at last iteration ckpt_file = cfg.MODEL.WEIGHTS resume = True DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( ckpt_file, resume=resume) res = Trainer.test(cfg, model) if comm.is_main_process(): verify_results(cfg, res) # save evaluation results in json os.makedirs(os.path.join(cfg.OUTPUT_DIR, 'inference'), exist_ok=True) with open( os.path.join(cfg.OUTPUT_DIR, 'inference', 'res_final.json'), 'w') as fp: json.dump(res, fp) return res elif args.eval_all: tester = Tester(cfg) all_ckpts = sorted(tester.check_pointer.get_all_checkpoint_files()) for i, ckpt in enumerate(all_ckpts): ckpt_iter = ckpt.split('model_')[-1].split('.pth')[0] if ckpt_iter.isnumeric() and int(ckpt_iter) + 1 < args.start_iter: # skip evaluation of checkpoints before start iteration continue if args.end_iter != -1: if not ckpt_iter.isnumeric( ) or int(ckpt_iter) + 1 > args.end_iter: # skip evaluation of checkpoints after end iteration break tester.test(ckpt) return best_res elif args.eval_during_train: tester = Tester(cfg) saved_checkpoint = None while True: if tester.check_pointer.has_checkpoint(): current_ckpt = tester.check_pointer.get_checkpoint_file() if saved_checkpoint is None or current_ckpt != saved_checkpoint: saved_checkpoint = current_ckpt tester.test(current_ckpt) time.sleep(10) else: if comm.is_main_process(): print( 'Please specify --eval-only, --eval-all, or --eval-during-train' )
def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume) res = Trainer.test(cfg, model) if comm.is_main_process(): verify_results(cfg, res) return res """ If you'd like to do anything fancier than the standard training logic, consider writing your own training loop or subclassing the trainer. """ trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train()
class DefaultTrainer(SimpleTrainer): """ A trainer with default training logic. Compared to `SimpleTrainer`, it contains the following logic in addition: 1. Create model, optimizer, scheduler, dataloader from the given config. 2. Load a checkpoint or `cfg.MODEL.WEIGHTS`, if exists. 3. Register a few common hooks. It is created to simplify the **standard model training workflow** and reduce code boilerplate for users who only need the standard training workflow, with standard features. It means this class makes *many assumptions* about your training logic that may easily become invalid in a new research. In fact, any assumptions beyond those made in the :class:`SimpleTrainer` are too much for research. The code of this class has been annotated about restrictive assumptions it mades. When they do not work for you, you're encouraged to: 1. Overwrite methods of this class, OR: 2. Use :class:`SimpleTrainer`, which only does minimal SGD training and nothing else. You can then add your own hooks if needed. OR: 3. Write your own training loop similar to `tools/plain_train_net.py`. Also note that the behavior of this class, like other functions/classes in this file, is not stable, since it is meant to represent the "common default behavior". It is only guaranteed to work well with the standard models and training workflow in FsDet. To obtain more stable behavior, write your own training logic with other public APIs. Attributes: scheduler: checkpointer (DetectionCheckpointer): cfg (CfgNode): Examples: .. code-block:: python trainer = DefaultTrainer(cfg) trainer.resume_or_load() # load last checkpoint or MODEL.WEIGHTS trainer.train() """ def __init__(self, cfg): """ Args: cfg (CfgNode): """ # Assume these objects must be constructed in this order. model = self.build_model(cfg) optimizer = self.build_optimizer(cfg, model) data_loader = self.build_train_loader(cfg) # For training, wrap with DDP. But don't need this for inference. if comm.get_world_size() > 1: model = DistributedDataParallel(model, device_ids=[comm.get_local_rank()], broadcast_buffers=False, find_unused_parameters=True) super().__init__(model, data_loader, optimizer) self.scheduler = self.build_lr_scheduler(cfg, optimizer) # Assume no other objects need to be checkpointed. # We can later make it checkpoint the stateful hooks self.checkpointer = DetectionCheckpointer( # Assume you want to save checkpoints together with logs/statistics model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=self.scheduler, ) self.start_iter = 0 self.max_iter = cfg.SOLVER.MAX_ITER self.cfg = cfg self.register_hooks(self.build_hooks()) def resume_or_load(self, resume=True): """ If `resume==True`, and last checkpoint exists, resume from it. Otherwise, load a model specified by the config. Args: resume (bool): whether to do resume or not """ # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration (or iter zero if there's no checkpoint). self.start_iter = (self.checkpointer.resume_or_load( self.cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1) def build_hooks(self): """ Build a list of default hooks, including timing, evaluation, checkpointing, lr scheduling, precise BN, writing events. Returns: list[HookBase]: """ cfg = self.cfg.clone() cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN ret = [ hooks.IterationTimer(), hooks.LRScheduler(self.optimizer, self.scheduler), hooks.PreciseBN( # Run at the same freq as (but before) evaluation. cfg.TEST.EVAL_PERIOD, self.model, # Build a new data loader to not affect training self.build_train_loader(cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) else None, ] # Do PreciseBN before checkpointer, because it updates the model and need to # be saved by checkpointer. # This is not always the best: if checkpointing has a different frequency, # some checkpoints may have more precise statistics than others. if comm.is_main_process(): ret.append( hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD)) def test_and_save_results(): self._last_eval_results = self.test(self.cfg, self.model) return self._last_eval_results # Do evaluation after checkpointer, because then if it fails, # we can use the saved checkpoint to debug. ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results)) if comm.is_main_process(): # run writers in the end, so that evaluation metrics are written ret.append(hooks.PeriodicWriter(self.build_writers())) return ret def build_writers(self): """ Build a list of writers to be used. By default it contains writers that write metrics to the screen, a json file, and a tensorboard event file respectively. If you'd like a different list of writers, you can overwrite it in your trainer. Returns: list[EventWriter]: a list of :class:`EventWriter` objects. It is now implemented by: .. code-block:: python return [ CommonMetricPrinter(self.max_iter), JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")), TensorboardXWriter(self.cfg.OUTPUT_DIR), ] """ # Assume the default print/log frequency. return [ # It may not always print what you want to see, since it prints "common" metrics only. CommonMetricPrinter(self.max_iter), JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")), TensorboardXWriter(self.cfg.OUTPUT_DIR), ] def train(self): """ Run training. Returns: OrderedDict of results, if evaluation is enabled. Otherwise None. """ super().train(self.start_iter, self.max_iter) if hasattr(self, "_last_eval_results") and comm.is_main_process(): verify_results(self.cfg, self._last_eval_results) return self._last_eval_results @classmethod def build_model(cls, cfg): """ Returns: torch.nn.Module: It now calls :func:`fsdet.modeling.build_model`. Overwrite it if you'd like a different model. """ model = build_model(cfg) logger = logging.getLogger(__name__) if not cfg.MUTE_HEADER: logger.info("Model:\n{}".format(model)) return model @classmethod def build_optimizer(cls, cfg, model): """ Returns: torch.optim.Optimizer: It now calls :func:`fsdet.solver.build_optimizer`. Overwrite it if you'd like a different optimizer. """ return build_optimizer(cfg, model) @classmethod def build_lr_scheduler(cls, cfg, optimizer): """ It now calls :func:`fsdet.solver.build_lr_scheduler`. Overwrite it if you'd like a different scheduler. """ return build_lr_scheduler(cfg, optimizer) @classmethod def build_train_loader(cls, cfg): """ Returns: iterable It now calls :func:`fsdet.data.build_detection_train_loader`. Overwrite it if you'd like a different data loader. """ return build_detection_train_loader(cfg) @classmethod def build_test_loader(cls, cfg, dataset_name): """ Returns: iterable It now calls :func:`fsdet.data.build_detection_test_loader`. Overwrite it if you'd like a different data loader. """ return build_detection_test_loader(cfg, dataset_name) @classmethod def build_evaluator(cls, cfg, dataset_name): """ Returns: DatasetEvaluator It is not implemented by default. """ raise NotImplementedError( "Please either implement `build_evaluator()` in subclasses, or pass " "your evaluator as arguments to `DefaultTrainer.test()`.") @classmethod def test(cls, cfg, model, evaluators=None): """ Args: cfg (CfgNode): model (nn.Module): evaluators (list[DatasetEvaluator] or None): if None, will call :meth:`build_evaluator`. Otherwise, must have the same length as `cfg.DATASETS.TEST`. Returns: dict: a dict of result metrics """ logger = logging.getLogger(__name__) if isinstance(evaluators, DatasetEvaluator): evaluators = [evaluators] if evaluators is not None: assert len( cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format( len(cfg.DATASETS.TEST), len(evaluators)) results = OrderedDict() for idx, dataset_name in enumerate(cfg.DATASETS.TEST): data_loader = cls.build_test_loader(cfg, dataset_name) # When evaluators are passed in as arguments, # implicitly assume that evaluators can be created before data_loader. if evaluators is not None: evaluator = evaluators[idx] else: try: evaluator = cls.build_evaluator(cfg, dataset_name) except NotImplementedError: logger.warn( "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, " "or implement its `build_evaluator` method.") results[dataset_name] = {} continue results_i = inference_on_dataset(model, data_loader, evaluator) results[dataset_name] = results_i if comm.is_main_process(): assert isinstance( results_i, dict ), "Evaluator must return a dict on the main process. Got {} instead.".format( results_i) logger.info("Evaluation results for {} in csv format:".format( dataset_name)) print_csv_format(results_i) if len(results) == 1: results = list(results.values())[0] return results