예제 #1
0
    def __init__(self, cfg):
        """
        Args:
            cfg (CfgNode):
        """
        # Assume these objects must be constructed in this order.
        model = self.build_model(cfg)
        optimizer = self.build_optimizer(cfg, model)
        data_loader = self.build_train_loader(cfg)

        # For training, wrap with DDP. But don't need this for inference.
        if comm.get_world_size() > 1:
            model = DistributedDataParallel(model,
                                            device_ids=[comm.get_local_rank()],
                                            broadcast_buffers=False,
                                            find_unused_parameters=True)
        super().__init__(model, data_loader, optimizer)

        self.scheduler = self.build_lr_scheduler(cfg, optimizer)
        # Assume no other objects need to be checkpointed.
        # We can later make it checkpoint the stateful hooks
        self.checkpointer = DetectionCheckpointer(
            # Assume you want to save checkpoints together with logs/statistics
            model,
            cfg.OUTPUT_DIR,
            optimizer=optimizer,
            scheduler=self.scheduler,
        )
        self.start_iter = 0
        self.max_iter = cfg.SOLVER.MAX_ITER
        self.cfg = cfg

        self.register_hooks(self.build_hooks())
예제 #2
0
    def __init__(self, size: int):
        """
        Args:
            size (int): the total number of data of the underlying dataset to sample from
        """
        self._size = size
        assert size > 0
        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

        shard_size = (self._size - 1) // self._world_size + 1
        begin = shard_size * self._rank
        end = min(shard_size * (self._rank + 1), self._size)
        self._local_indices = range(begin, end)
예제 #3
0
def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the FsDet logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Backup the config to the output directory

    Args:
        cfg (CfgNode): the full config to be used
        args (argparse.NameSpace): the command line arguments to be logged
    """
    output_dir = cfg.OUTPUT_DIR
    if comm.is_main_process() and output_dir:
        PathManager.mkdirs(output_dir)

    rank = comm.get_rank()
    setup_logger(output_dir, distributed_rank=rank, name="fvcore")
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(
        rank, comm.get_world_size()))
    if not cfg.MUTE_HEADER:
        logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config_file"):
        logger.info("Contents of args.config_file={}:\n{}".format(
            args.config_file,
            PathManager.open(args.config_file, "r").read()))

    if not cfg.MUTE_HEADER:
        logger.info("Running with full config:\n{}".format(cfg))
    if comm.is_main_process() and output_dir:
        # Note: some of our scripts may expect the existence of
        # config.yaml in output directory
        path = os.path.join(output_dir, "config.yaml")
        with PathManager.open(path, "w") as f:
            f.write(cfg.dump())
        logger.info("Full config saved to {}".format(os.path.abspath(path)))

    # make sure each worker has a different, yet deterministic seed if specified
    seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank)

    # cudnn benchmark has large overhead. It shouldn't be used considering the small size of
    # typical validation set.
    if not (hasattr(args, "eval_only") and args.eval_only):
        torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK
예제 #4
0
    def __init__(self, size: int, shuffle: bool = True, seed: Optional[int] = None):
        """
        Args:
            size (int): the total number of data of the underlying dataset to sample from
            shuffle (bool): whether to shuffle the indices or not
            seed (int): the initial seed of the shuffle. Must be the same
                across all workers. If None, will use a random seed shared
                among workers (require synchronization among all workers).
        """
        self._size = size
        assert size > 0
        self._shuffle = shuffle
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)

        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()
예제 #5
0
    def __init__(self, dataset_dicts, repeat_thresh, shuffle=True, seed=None):
        """
        Args:
            dataset_dicts (list[dict]): annotations in Detectron2 dataset format.
            repeat_thresh (float): frequency threshold below which data is repeated.
            shuffle (bool): whether to shuffle the indices or not
            seed (int): the initial seed of the shuffle. Must be the same
                across all workers. If None, will use a random seed shared
                among workers (require synchronization among all workers).
        """
        self._shuffle = shuffle
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)

        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

        # Get fractional repeat factors and split into whole number (_int_part)
        # and fractional (_frac_part) parts.
        rep_factors = self._get_repeat_factors(dataset_dicts, repeat_thresh)
        self._int_part = torch.trunc(rep_factors)
        self._frac_part = rep_factors - self._int_part
예제 #6
0
    def forward(self, input):
        if comm.get_world_size() == 1 or not self.training:
            return super().forward(input)

        assert input.shape[0] > 0, "SyncBatchNorm does not support empty inputs"
        C = input.shape[1]
        mean = torch.mean(input, dim=[0, 2, 3])
        meansqr = torch.mean(input * input, dim=[0, 2, 3])

        vec = torch.cat([mean, meansqr], dim=0)
        vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())

        mean, meansqr = torch.split(vec, C)
        var = meansqr - mean * mean
        self.running_mean += self.momentum * (mean.detach() -
                                              self.running_mean)
        self.running_var += self.momentum * (var.detach() - self.running_var)

        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1, 1)
        bias = bias.reshape(1, -1, 1, 1)
        return input * scale + bias
예제 #7
0
def build_detection_train_loader(cfg, mapper=None):
    """
    A data loader is created by the following steps:

    1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
    2. Start workers to work on the dicts. Each worker will:
      * Map each metadata dict into another format to be consumed by the model.
      * Batch them by simply putting dicts into a list.
    The batched ``list[mapped_dict]`` is what this dataloader will return.

    Args:
        cfg (CfgNode): the config
        mapper (callable): a callable which takes a sample (dict) from dataset and
            returns the format to be consumed by the model.
            By default it will be `DatasetMapper(cfg, True)`.

    Returns:
        a torch DataLoader object
    """
    num_workers = get_world_size()
    images_per_batch = cfg.SOLVER.IMS_PER_BATCH
    assert (
        images_per_batch % num_workers == 0
    ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
        images_per_batch, num_workers)
    assert (
        images_per_batch >= num_workers
    ), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
        images_per_batch, num_workers)
    images_per_worker = images_per_batch // num_workers

    dataset_dicts = get_detection_dataset_dicts(
        cfg.DATASETS.TRAIN,
        filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
    )
    dataset = DatasetFromList(dataset_dicts, copy=False)

    # Bin edges for batching images with similar aspect ratios. If ASPECT_RATIO_GROUPING
    # is enabled, we define two bins with an edge at height / width = 1.
    group_bin_edges = [1] if cfg.DATALOADER.ASPECT_RATIO_GROUPING else []
    aspect_ratios = [
        float(img["height"]) / float(img["width"]) for img in dataset
    ]

    if mapper is None:
        mapper = DatasetMapper(cfg, True)
    dataset = MapDataset(dataset, mapper)

    sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
    logger = logging.getLogger(__name__)
    logger.info("Using training sampler {}".format(sampler_name))
    if sampler_name == "TrainingSampler":
        sampler = samplers.TrainingSampler(len(dataset))
    elif sampler_name == "RepeatFactorTrainingSampler":
        sampler = samplers.RepeatFactorTrainingSampler(
            dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD)
    else:
        raise ValueError("Unknown training sampler: {}".format(sampler_name))
    batch_sampler = build_batch_data_sampler(sampler, images_per_worker,
                                             group_bin_edges, aspect_ratios)

    data_loader = torch.utils.data.DataLoader(
        dataset,
        num_workers=cfg.DATALOADER.NUM_WORKERS,
        batch_sampler=batch_sampler,
        collate_fn=trivial_batch_collator,
        worker_init_fn=worker_init_reset_seed,
    )
    return data_loader