def HyObscure(df_train, grid_area_dict, area_grid_dict, cluster_num, grid_area_number, grid_list, area_reducibility, area_grid_rowcol_dict, area_grid_colrow_dict, method, grid_rowcol, grid_colrow, l_threshold, k_threshold, deltaX, pp): df_train_copy = copy.deepcopy(df_train) df_train_copy['grid_group'] = pd.Series(np.zeros(df_train_copy.shape[0]), index=df_train_copy.index, dtype='int32') user_num = df_train_copy.shape[0] X_ori = {} for k in range(user_num): user_id = df_train_copy['uid'][k] X_ori[user_id] = df_train_copy[df_train_copy['uid'] == user_id].values[ 0, :-1] for k in X_ori.keys(): user_grid = X_ori[k][-2] X_ori[k][-3] = grid_area_dict[user_grid] for i in area_grid_dict: print("user number in area ", i, " is ", funcs.k_anonymity(df_train, area_grid_dict[i])) print("start solving xpgg...") xpgg = np.ones((cluster_num * grid_area_number, cluster_num * grid_area_number)) * 0.00000001 JSD_Mat = np.ones( (cluster_num * grid_area_number, cluster_num * grid_area_number)) pgy = np.ones( (len(grid_list), cluster_num * grid_area_number)) * 0.00000001 JSD_Mat_dict = {} pgy_dict = {} for op in range(0, 6): ## compute JSD and pgy JSD_Mat, pgy, JSD_Mat_dict, pgy_dict = funcs.get_JSD_PGY( df_train, area_grid_dict, JSD_Mat_dict, cluster_num, pgy_dict, JSD_Mat, pgy, method) print('op:', op) grid_xpgg_dict = {} ## compute xpgg for gg in range(0, grid_area_number): eng = matlab.engine.start_matlab() eng.edit('../../matlab/checkin_clusternum_scenario_II/HyObscure', nargout=0) eng.cd('../../matlab/checkin_clusternum_scenario_II', nargout=0) grid_xpgg_dict[gg] = np.array(eng.HyObscure(deltaX, gg)) for row in range(cluster_num): for col in range(cluster_num): xpgg[gg + row * grid_area_number, gg + col * grid_area_number] = grid_xpgg_dict[gg][row, col] mean_Utility = funcs.Mean_JSD(JSD_Mat, xpgg) mean_Privacy = funcs.Mean_KL_div(pgy, xpgg) min_mean_Utility = mean_Utility min_mean_Privacy = mean_Privacy ## area_grid_rowcol_dict, area_grid_colrow_dict, area_grid_dict, grid_area_dict, area_reducibility areas = list(area_grid_dict.keys()) random.shuffle(areas) ### change grid group (area) by stochastic privacy-utility boosting for area_code in areas: ##select one area to adjust area_grids = area_grid_dict[ area_code] ## get all the grids in the area l_cur = funcs.l_diversity(df_train, area_grids) ## check l diversity l_range = int(np.exp(l_cur) - np.exp(np.log(l_threshold))) print('start adjusting area: ', area_code) if l_range > 0: ### select one direction to adjust: left (0); right (1); up (2); down(3) d = np.random.choice([0, 1, 2, 3], p=area_reducibility[area_code] / np.sum(area_reducibility[area_code])) # the selected area can be reduced through the selected direction if d < 2: ## change left or right area_grid_line_list_dict = area_grid_rowcol_dict line_list_to_grid = funcs.rowcol_to_grid grid_linelist = grid_rowcol else: ## change up or down area_grid_line_list_dict = area_grid_colrow_dict line_list_to_grid = funcs.colrow_to_grid grid_linelist = grid_colrow area_lines = list(area_grid_line_list_dict[area_code].keys()) area_lines.sort() for line in area_lines: # recheck area l diversity area_grids = area_grid_dict[ area_code] ## get all the grids in the area l_cur = funcs.l_diversity(df_train, area_grids) ## check l diversity l_range = int(np.exp(l_cur) - np.exp(np.log(l_threshold))) change_range = l_range line_lists = area_grid_line_list_dict[area_code][line] line_lists.sort() line_lists_len = len(line_lists) if change_range > line_lists_len: change_range = line_lists_len for i in range(1, change_range + 1): if d == 0 or d == 3: moveout_grid_lists = line_lists[-i:] elif d == 1 or d == 2: moveout_grid_lists = line_lists[:i] moveout_grids = [] for mgc in moveout_grid_lists: moveout_grids.append(line_list_to_grid(line, mgc)) adjusted_area_grids = list( set(area_grids) - set(moveout_grids)) ## check k anonymity k_adjust = funcs.k_anonymity(df_train, adjusted_area_grids) ## the adjusted schema meets both k-anonymity and l-diversity if k_adjust >= k_threshold: if d == 0: to_area = area_code + 1 elif d == 1: to_area = area_code - 1 elif d == 2: to_area = area_code - int( grid_area_number / int(np.sqrt(grid_area_number))) elif d == 3: to_area = area_code + int( grid_area_number / int(np.sqrt(grid_area_number))) ## adjust grid groups (areas): update area_grid_dict and grid_area_dict area_grid_dict_cur = copy.deepcopy(area_grid_dict) adjusted_area_grids.sort() area_grid_dict_cur[area_code] = adjusted_area_grids area_grid_dict_cur[to_area] = list( set(area_grid_dict_cur[to_area]) | set(moveout_grids)) area_grid_dict_cur[to_area].sort() grid_area_dict_cur = copy.deepcopy(grid_area_dict) for grid in moveout_grids: grid_area_dict_cur[grid] = to_area for i in area_grid_dict_cur: print("area:", i, "grid number:", len(area_grid_dict_cur[i])) print('from area: ', area_code, 'to area: ', to_area, 'change line: ', line, 'moveout_grids: ', moveout_grids) df_train_new = funcs.update_grid_group( df_train, grid_area_dict_cur) # try: new_JSD_Mat, new_pgy, new_JSD_Mat_dict, new_pgy_dict = funcs.get_JSD_PGY( df_train_new, area_grid_dict_cur, JSD_Mat_dict, cluster_num, pgy_dict, JSD_Mat, pgy, method) new_mean_Utility = funcs.Mean_JSD( new_JSD_Mat, xpgg) new_mean_Privacy = funcs.Mean_KL_div(new_pgy, xpgg) if new_mean_Privacy < min_mean_Privacy and new_mean_Utility < min_mean_Utility: min_mean_Utility = new_mean_Utility min_mean_Privacy = new_mean_Privacy min_grid_area_dict = grid_area_dict_cur min_area_grid_dict = area_grid_dict_cur min_df_train = df_train_new grid_area_dict = min_grid_area_dict area_grid_dict = min_area_grid_dict df_train = min_df_train min_distortion_budget = min_mean_Utility area_grid_rowcol_dict, area_grid_colrow_dict = funcs.update_rowcol_colrow_dict( area_grid_dict) print("! Find a better area group") break print(op, area_code, to_area, line, mgc, mean_Privacy, mean_Utility, min_mean_Privacy, min_mean_Utility, new_mean_Privacy, new_mean_Utility) else: print("*** area not meet k_anonymity requirement") else: print("*** area not meet l_diversity requirement") df_train = funcs.update_grid_group(df_train, grid_area_dict) X_obf_dict = {} for i in range(25): X_obf_dict[i], _ = funcs.get_obf_X(df_train, xpgg, pp) return X_obf_dict, X_ori
def HyObscure(df_train, df_test, df_test_rec_items, df_item_age_uid, age_group_dict, group_age_dict, cluster_num, age_group_number, age_list, deltaX, k_threshold, l_threshold, pp): df_test_copy = copy.deepcopy(df_test) df_test_copy['age_group'] = pd.Series(np.zeros(df_test_copy.shape[0]), index=df_test_copy.index, dtype='int32') xpgg = np.ones((cluster_num * age_group_number, cluster_num * age_group_number)) * 0.00000001 JSD_Mat = np.ones( (cluster_num * age_group_number, cluster_num * age_group_number)) pgy = np.ones((len(age_list), cluster_num * age_group_number)) * 0.00000001 group_min_age_dict = {} group_usersize_dict = {} for op in range(0, 5): age_xpgg_dict = {} ###### Compute JSD, pgy, xpgg JSD_Mat_dict = {} pgy_dict = {} for ag in range(age_group_number): group_min_age_dict[ag] = group_age_dict[ag][0] print(group_min_age_dict[ag]) df_test_ag = df_test.loc[df_test['age_group'] == ag] age_list_ag = group_age_dict[ag] group_usersize_dict[ag] = df_test_ag.shape[0] JSD_Mat_dict[ag] = funcs.cal_JSD_Matrix_withoutAgeGroup( df_test_ag, cluster_num, 4) print(ag, cluster_num, age_list_ag) pgy_dict[ag] = funcs.cal_pgy_withoutAgeGroup( df_test_ag, cluster_num, age_list_ag) pd.DataFrame(JSD_Mat_dict[ag]).to_csv( 'tmp/JSDM_ageGroup_hyobscure.csv', index=False, header=None) pd.DataFrame(pgy_dict[ag]).to_csv('tmp/pgy_ageGroup_hyobscure.csv', index=False, header=None) eng = matlab.engine.start_matlab() eng.edit('../../matlab/age_clusternum_scenario_I/HyObscure', nargout=0) eng.cd('../../matlab/age_clusternum_scenario_I', nargout=0) age_xpgg_dict[ag], distortion_budget = np.array( eng.HyObscure(deltaX, nargout=2)) age_xpgg_dict[ag] = np.array(age_xpgg_dict[ag]) for ag in range(age_group_number): for age in group_age_dict[ag]: for col in range(cluster_num): pgy[age - group_min_age_dict[0], ag + col * age_group_number] = pgy_dict[ag][age - group_min_age_dict[ ag], col] * \ group_usersize_dict[ ag] / \ df_test.shape[0] for ag in range(age_group_number): for row in range(cluster_num): for col in range(cluster_num): xpgg[ag + row * age_group_number, ag + col * age_group_number] = age_xpgg_dict[ag][row, col] JSD_Mat[ag + row * age_group_number, ag + col * age_group_number] = JSD_Mat_dict[ag][row, col] # pd.DataFrame(xpgg).to_csv('xpgg.csv', index=False, header=None) # pd.DataFrame(pgy).to_csv('pgy_full.csv', index=False, header=None) # pd.DataFrame(JSD_Mat).to_csv('JSD_full.csv', index=False, header=None) min_JSD_Mat = JSD_Mat min_pgy = pgy ### change age group by greedy approach mean_Utility = funcs.Mean_JSD(JSD_Mat, xpgg) mean_Privacy = funcs.Mean_KL_div(pgy, xpgg) min_mean_Utility = mean_Utility min_mean_Privacy = mean_Privacy adjustable_groups, reducible_groups = funcs.age_group_adjust_greedy( df_item_age_uid, group_age_dict, k_threshold, np.log(l_threshold)) min_group = 0 for i in adjustable_groups: age_group_dict_cur = {} for group, group_age_list in adjustable_groups[i].items(): for age in group_age_list: age_group_dict_cur[age] = group df_test_new = funcs.update_age_group(df_test, age_group_dict_cur) new_JSD_Mat = funcs.cal_JSD_Matrix_withAgeGroup( df_test_new, cluster_num, age_group_number, 4) new_pgy = funcs.cal_pgy_withAgeGroup(df_test_new, cluster_num, age_group_number, age_list) new_mean_Utility = funcs.Mean_JSD(new_JSD_Mat, xpgg) new_mean_Privacy = funcs.Mean_KL_div(new_pgy, xpgg) if new_mean_Utility < min_mean_Utility and new_mean_Privacy < min_mean_Privacy: min_mean_Utility = new_mean_Utility min_mean_Privacy = new_mean_Privacy min_group_age_dict = copy.deepcopy(adjustable_groups[i]) min_age_group_dict = copy.deepcopy(age_group_dict_cur) min_JSD_Mat = new_JSD_Mat min_pgy = new_pgy min_group = i print(op, i, min_group, mean_Privacy, mean_Utility, min_mean_Privacy, min_mean_Utility, new_mean_Privacy, new_mean_Utility) if min_mean_Privacy < mean_Privacy and min_mean_Utility < mean_Utility: print("find a better age group:", group_age_dict) age_group_dict = min_age_group_dict group_age_dict = min_group_age_dict df_test = funcs.update_age_group(df_test, age_group_dict) else: break user_num = df_test_copy.shape[0] X_ori = {} for k in range(user_num): user_id = df_test_copy['uid'][k] X_ori[user_id] = df_test_copy[df_test_copy['uid'] == user_id].values[ 0, :-1] for k in X_ori.keys(): user_age = X_ori[k][-2] X_ori[k][-3] = age_group_dict[user_age] df_test = funcs.update_age_group(df_test, age_group_dict) df_train = funcs.update_age_group(df_train, age_group_dict) df_test_rec_items = funcs.update_age_group(df_test_rec_items, age_group_dict) model_rf = funcs.train_rf_model(df_train) model_xgb = funcs.train_xgb_model(df_train) print("model train over, start obfuscating...") X_obf_dict = {} for i in range(100): X_obf_dict[i], _ = funcs.get_obf_X(df_test, xpgg, pp) return X_obf_dict, X_ori, model_rf, model_xgb
row, col] pd.DataFrame(xpgg).to_csv('xpgg.csv', index=False, header=None) pd.DataFrame(pgy).to_csv('pgy_full.csv', index=False, header=None) pd.DataFrame(JSD_Mat).to_csv('JSD_full.csv', index=False, header=None) min_JSD_Mat = JSD_Mat min_pgy = pgy ### change age group by greedy approach mean_Utility = funcs.Mean_JSD(JSD_Mat, xpgg) mean_Privacy = funcs.Mean_KL_div(pgy, xpgg) min_mean_Utility = mean_Utility min_mean_Privacy = mean_Privacy adjustable_groups, reducible_groups = age_group_adjust_greedy( df_item_age_uid, group_age_dict, k_threshold, np.log(l_threshold), beta, alpha) min_group = 0 for i in adjustable_groups: age_group_dict_cur = {} for group, group_age_list in adjustable_groups[ i].items(): for age in group_age_list: age_group_dict_cur[age] = group
def YGen(df_train, age_group_number, cluster_num, age_list, age_group_dict, group_age_dict, df_item_age_uid, deltaX, k_threshold, l_threshold, pp): df_train_copy = copy.deepcopy(df_train) df_train_copy['age_group'] = pd.Series(np.zeros(df_train_copy.shape[0]), index=df_train_copy.index, dtype='int32') user_num = df_train_copy.shape[0] X_ori = {} for k in range(user_num): user_id = df_train_copy['uid'][k] X_ori[user_id] = df_train_copy[df_train_copy['uid'] == user_id].values[ 0, :-1] for k in X_ori.keys(): user_age = X_ori[k][-2] X_ori[k][-3] = age_group_dict[user_age] xpgg = np.ones((cluster_num * age_group_number, cluster_num * age_group_number)) * 0.00000001 JSD_Mat = np.ones( (cluster_num * age_group_number, cluster_num * age_group_number)) pgy = np.ones((len(age_list), cluster_num * age_group_number)) * 0.00000001 group_min_age_dict = {} group_usersize_dict = {} age_xpgg_dict = {} JSD_Mat_dict = {} pgy_dict = {} for ag in range(age_group_number): group_min_age_dict[ag] = group_age_dict[ag][0] print(group_min_age_dict[ag]) df_train_ag = df_train.loc[df_train['age_group'] == ag] age_list_ag = group_age_dict[ag] group_usersize_dict[ag] = df_train_ag.shape[0] JSD_Mat_dict[ag] = funcs.cal_JSD_Matrix_withoutAgeGroup( df_train_ag, cluster_num, 4) pgy_dict[ag] = funcs.cal_pgy_withoutAgeGroup(df_train_ag, cluster_num, age_list_ag) # print(JSD_Mat_dict[ag].shape) # print(pgy_dict[ag].shape) pd.DataFrame(JSD_Mat_dict[ag]).to_csv('tmp/JSDM_ageGroup_ygen.csv', index=False, header=None) pd.DataFrame(pgy_dict[ag]).to_csv('tmp/pgy_ageGroup_ygen.csv', index=False, header=None) eng = matlab.engine.start_matlab() eng.edit('../../matlab/age_tradeoff_scenario_II/YGen', nargout=0) eng.cd('../../matlab/age_tradeoff_scenario_II', nargout=0) age_xpgg_dict[ag], distortion_budget = np.array( eng.YGen(deltaX, nargout=2)) age_xpgg_dict[ag] = np.array(age_xpgg_dict[ag]) for ag in range(age_group_number): for age in group_age_dict[ag]: for col in range(cluster_num): pgy[age - group_min_age_dict[0], ag + col * age_group_number] = pgy_dict[ag][ age - group_min_age_dict[ ag], col] * \ group_usersize_dict[ag] / \ df_train.shape[0] for ag in range(age_group_number): for row in range(cluster_num): for col in range(cluster_num): xpgg[ag + row * age_group_number, ag + col * age_group_number] = age_xpgg_dict[ag][row, col] JSD_Mat[ag + row * age_group_number, ag + col * age_group_number] = JSD_Mat_dict[ag][row, col] JSD_Mat = np.ones( (cluster_num * age_group_number, cluster_num * age_group_number)) pgy = np.ones((len(age_list), cluster_num * age_group_number)) * 0.00000001 group_min_age_dict = {} group_usersize_dict = {} JSD_Mat_dict = {} pgy_dict = {} for ag in range(age_group_number): group_min_age_dict[ag] = group_age_dict[ag][0] print(group_min_age_dict[ag]) df_train_ag = df_train.loc[df_train['age_group'] == ag] age_list_ag = group_age_dict[ag] group_usersize_dict[ag] = df_train_ag.shape[0] JSD_Mat_dict[ag] = funcs.cal_JSD_Matrix_withoutAgeGroup( df_train_ag, cluster_num, 4) pgy_dict[ag] = funcs.cal_pgy_withoutAgeGroup(df_train_ag, cluster_num, age_list_ag) for ag in range(age_group_number): for age in group_age_dict[ag]: for col in range(cluster_num): pgy[age - group_min_age_dict[0], ag + col * age_group_number] = pgy_dict[ag][ age - group_min_age_dict[ ag], col] * \ group_usersize_dict[ag] / \ df_train.shape[0] for ag in range(age_group_number): for row in range(cluster_num): for col in range(cluster_num): # xpgg[ag + row * age_group_number, ag + col * age_group_number] = age_xpgg_dict[ag][row, col] JSD_Mat[ag + row * age_group_number, ag + col * age_group_number] = JSD_Mat_dict[ag][row, col] min_JSD_Mat = JSD_Mat min_pgy = pgy ### change age group by greedy approach mean_Utility = funcs.Mean_JSD(JSD_Mat, xpgg) mean_Privacy = funcs.Mean_KL_div(pgy, xpgg) min_mean_Utility = mean_Utility min_mean_Privacy = mean_Privacy adjustable_groups, reducible_groups = funcs.age_group_adjust_greedy( df_item_age_uid, group_age_dict, k_threshold, np.log(l_threshold)) min_group = 0 print("start adjusting...") better_group_flag = 0 for i in adjustable_groups: age_group_dict_cur = {} for group, group_age_list in adjustable_groups[i].items(): for age in group_age_list: age_group_dict_cur[age] = group df_train_new = funcs.update_age_group(df_train, age_group_dict_cur) new_JSD_Mat = funcs.cal_JSD_Matrix_withAgeGroup( df_train_new, cluster_num, age_group_number, 4) new_pgy = funcs.cal_pgy_withAgeGroup(df_train_new, cluster_num, age_group_number, age_list) new_mean_Utility = funcs.Mean_JSD(new_JSD_Mat, xpgg) new_mean_Privacy = funcs.Mean_KL_div(new_pgy, xpgg) print(new_mean_Privacy) print(new_mean_Utility) if new_mean_Utility < min_mean_Utility and new_mean_Privacy < min_mean_Privacy: min_mean_Utility = new_mean_Utility min_mean_Privacy = new_mean_Privacy min_group_age_dict = copy.deepcopy(adjustable_groups[i]) min_age_group_dict = copy.deepcopy(age_group_dict_cur) min_JSD_Mat = new_JSD_Mat min_pgy = new_pgy min_group = i print('Find better group!') better_group_flag = 1 print(i, min_group, mean_Privacy, mean_Utility, min_mean_Privacy, min_mean_Utility, new_mean_Privacy, new_mean_Utility) if better_group_flag == 1: age_group_dict = min_age_group_dict group_age_dict = min_group_age_dict else: print("find better group failed.") df_train = funcs.update_age_group(df_train, age_group_dict) # 使用得到的xpgg求解混淆后的df_train X_obf_dict = {} for i in range(25): X_obf_dict[i], _ = funcs.get_obf_X(df_train, xpgg, pp) return X_obf_dict, X_ori