예제 #1
0
def caculate_fitness(x_train, y_train, x_test, y_test):
    y_train = y_train.argmax(1)
    y_test = y_test.argmax(1)
    clf = svm_lpp().fit(x_train, y_train)
    y_test_score = clf.decision_function(x_test)
    #acc = accuracy_score(y_test, clf.predict(x_test))
    #f1 = F1(y_test, clf.predict(x_test))
    #acc = accuracy_score(y_test, clf.predict(x_test))
    roc_auc = function_lpp_new.draw_roc(y_test, y_test_score)
    return roc_auc
예제 #2
0
def caculate_fitness_plot(x_train, y_train, x_test, y_test):
    y_train = y_train.argmax(1)
    y_test = y_test.argmax(1)
    clf = svm_lpp().fit(x_train, y_train)
    train_predict = clf.predict(x_train)
    test_predict = clf.predict(x_test)
    test_predict_proba = clf.decision_function(x_test)

    print(confusion_matrix(y_test, test_predict))
    print('train sensitivity:', sensitivity(y_train, train_predict),
          'train specifity:', specificity(y_train, train_predict))
    print('test sensitivity:', sensitivity(y_test, test_predict),
          'test specifity:', specificity(y_test, test_predict))
    print('f1_score:', F1(y_test, test_predict))
    print('acc:', accuracy_score(y_test, test_predict))

    roc_auc = function_lpp_new.draw_roc(y_test, test_predict_proba)
    print('roc:', roc_auc)

    print('over')
예제 #3
0
                x_train, x_test, index)
            result = obtain_flod_predict(x_train_pca, y_train, x_test_pca,
                                         y_test)
            save_true.append(result[0])
            save_predict.append(result[1])
            y_predict_label.append(result[2])
            print(str(fold), 'over')

        for i in range(5):
            result_eva.append([
                recall_score(save_true[i], y_predict_label[i]),
                specificity(save_true[i], y_predict_label[i]),
                precision_score(save_true[i], y_predict_label[i]),
                f1_score(save_true[i], y_predict_label[i]),
                accuracy_score(save_true[i], y_predict_label[i]),
                function_lpp_new.draw_roc(save_true[i], save_predict[i])
            ])

        for i in range(1, 5):
            save_true[0] = np.hstack([save_true[0], save_true[i]])
            save_predict[0] = np.hstack([save_predict[0], save_predict[i]])
            y_predict_label[0] = np.hstack(
                [y_predict_label[0], y_predict_label[i]])
        save_true = save_true[0]
        save_predict = save_predict[0]

        y_predict_label = y_predict_label[0]
        scio.savemat(
            params['path_PCA'] + str(lll) + 'predict_genetic_multi.mat', {
                'y_predict': save_predict,
                'y_true': save_true