def generate_outputs(): cwrap_files = filter_by_extension(options.files, '.cwrap') nn_files = filter_by_extension(options.files, 'nn.yaml', '.h') native_files = filter_by_extension(options.files, 'native_functions.yaml') declarations = [d for file in cwrap_files for d in cwrap_parser.parse(file)] declarations += nn_parse.run(nn_files) declarations += native_parse.run(native_files) declarations = preprocess_declarations.run(declarations) for fname, env in generators.items(): fm = file_manager if env['name'] == 'CUDA': fm = cuda_file_manager fm.write(fname, GENERATOR_DERIVED, env) # note: this will fill in top_env['type/tensor_method_declarations/definitions'] # and modify the declarations to include any information that will all_backends # be used by function_wrapper.create_derived output_declarations = function_wrapper.create_generic(top_env, declarations) output_declarations = postprocess_output_declarations(output_declarations) file_manager.write("Declarations.yaml", format_yaml(output_declarations)) # populated by generate_storage_type_and_tensor all_types = [] for backend, density, scalar_type in iterate_types(): all_types.append(generate_storage_type_and_tensor( backend, density, scalar_type, declarations)) file_manager.write('Type.h', TYPE_H, top_env) file_manager.write('Type.cpp', TYPE_CPP, top_env) cuda_file_manager.write('RegisterCUDA.h', REGISTER_CUDA_H, top_env) cuda_file_manager.write('RegisterCUDA.cpp', REGISTER_CUDA_CPP, top_env) file_manager.write('Tensor.h', TENSOR_H, top_env) file_manager.write('TensorMethods.h', TENSOR_METHODS_H, top_env) file_manager.write('Functions.h', FUNCTIONS_H, top_env) file_manager.write('CPUCopy.cpp', copy_wrapper.create(all_types, 'CPU')) cuda_file_manager.write('CUDACopy.cpp', copy_wrapper.create(all_types, 'CUDA')) file_manager.write('NativeFunctions.h', NATIVE_FUNCTIONS_H, top_env) file_manager.check_all_files_written() cuda_file_manager.check_all_files_written()
def generate_outputs(): cwrap_files = [f for f in files if f.endswith('.cwrap')] nn_files = [f for f in files if f.endswith('nn.yaml') or f.endswith('.h')] native_files = [f for f in files if f.endswith('native_functions.yaml')] declarations = [d for file in cwrap_files for d in cwrap_parser.parse(file)] declarations += nn_parse.run(nn_files) declarations += native_parse.run(native_files) declarations = preprocess_declarations.run(declarations) for fname, env in generators.items(): file_manager.write(fname, GENERATOR_DERIVED.substitute(env)) # note: this will fill in top_env['type/tensor_method_declarations/definitions'] # and modify the declarations to include any information that will all_backends # be used by function_wrapper.create_derived output_declarations = function_wrapper.create_generic(top_env, declarations) output_declarations = postprocess_output_declarations(output_declarations) file_manager.write("Declarations.yaml", format_yaml(output_declarations)) # populated by generate_storage_type_and_tensor all_types = [] for backend, density, scalar_type in iterate_types(): all_types.append(generate_storage_type_and_tensor( backend, density, scalar_type, declarations)) file_manager.write('Type.h', TYPE_H.substitute(top_env)) file_manager.write('Type.cpp', TYPE_CPP.substitute(top_env)) file_manager.write('Tensor.h', TENSOR_H.substitute(top_env)) file_manager.write('TensorMethods.h', TENSOR_METHODS_H.substitute(top_env)) file_manager.write('Functions.h', FUNCTIONS_H.substitute(top_env)) file_manager.write('Copy.cpp', copy_wrapper.create(all_types)) file_manager.write('NativeFunctions.h', NATIVE_FUNCTIONS_H.substitute(top_env)) file_manager.check_all_files_written()
declarations = [d for file in cwrap_files for d in cwrap_parser.parse(file)] print(nn_files) declarations += nn_parse.run(nn_files) declarations += native_parse.run(native_files) declarations = preprocess_declarations.run(declarations) for fname, env in generators.items(): write(fname, GENERATOR_DERIVED.substitute(env)) # note: this will fill in top_env['type/tensor_method_declarations/definitions'] # and modify the declarations to include any information that will all_backends # be used by function_wrapper.create_derived output_declarations = function_wrapper.create_generic(top_env, declarations) output_declarations = postprocess_output_declarations(output_declarations) write("Declarations.yaml", format_yaml(output_declarations)) # populated by generate_storage_type_and_tensor all_types = [] for backend in backends: for density in densities: for scalar_type in scalar_types: if density == 'Sparse' and scalar_type[0] == 'Half': # THS does not do half type yet. continue all_types.append(generate_storage_type_and_tensor( backend, density, scalar_type, declarations))
def generate_outputs(): cwrap_files = filter_by_extension(options.files, '.cwrap') nn_files = filter_by_extension(options.files, 'nn.yaml', '.h') native_files = filter_by_extension(options.files, 'native_functions.yaml') declarations = [d for file in cwrap_files for d in cwrap_parser.parse(file)] declarations += nn_parse.run(nn_files) declarations += native_parse.run(native_files) declarations = preprocess_declarations.run(declarations) for fname, env in generators.items(): fm = file_manager if env['name'] == 'CUDA': fm = cuda_file_manager fm.write(fname, GENERATOR_DERIVED, env) # note: this will fill in top_env['type/tensor_method_declarations/definitions'] # and modify the declarations to include any information that will all_backends # be used by function_wrapper.create_derived output_declarations = function_wrapper.create_generic(top_env, declarations) output_declarations = postprocess_output_declarations(output_declarations) file_manager.write("Declarations.yaml", format_yaml(output_declarations)) for backend, density in iterate_types(): generate_storage_type_and_tensor(backend, density, declarations) for backend in extension_backends: generate_type_extension_backend(backend, declarations) for backend, density, scalar_type in legacy_iterate_types(): if density == 'Dense': generate_legacy_th_dispatcher(backend, density, scalar_type, []) core_files = { 'Type.h': TYPE_H, 'Tensor.h': TENSOR_H, 'TensorMethods.h': TENSOR_METHODS_H } for core_file, core_template_file in core_files.items(): core_file_manager.write(core_file, core_template_file, top_env) file_manager.write('TypeExtendedInterface.h', TYPE_EXTENDED_INTERFACE_H, top_env) file_manager.write('TypeDefault.h', TYPE_DEFAULT_H, top_env) file_manager.write('TypeDefault.cpp', TYPE_DEFAULT_CPP, top_env) file_manager.write('LegacyTHDispatcher.h', LEGACY_TH_DISPATCHER_H, top_env) file_manager.write('LegacyTHDispatcher.cpp', LEGACY_TH_DISPATCHER_CPP, top_env) file_manager.write('RegisterCPU.h', REGISTER_CPU_H, top_env) file_manager.write('RegisterCPU.cpp', REGISTER_CPU_CPP, top_env) cuda_file_manager.write('RegisterCUDA.h', REGISTER_CUDA_H, top_env) cuda_file_manager.write('RegisterCUDA.cpp', REGISTER_CUDA_CPP, top_env) file_manager.write('Functions.h', FUNCTIONS_H, top_env) file_manager.write('LegacyTHFunctions.h', LEGACY_TH_FUNCTIONS_H, top_env) file_manager.write('NativeFunctions.h', NATIVE_FUNCTIONS_H, top_env) file_manager.write('ExtensionBackendRegistration.h', EXTENSION_BACKEND_REGISTRATION_H, top_env) file_manager.check_all_files_written() cuda_file_manager.check_all_files_written() # check that generated files match source files core_source_path = os.path.join(options.source_path, 'core') match, mismatch, errors = cmpfiles_with_eol_normalization(core_install_dir, core_source_path, core_files.keys()) if errors: raise RuntimeError("Error while trying to compare source and generated files for {}. " "Source directory: {}. Generated directory: {}." .format(errors, core_source_path, core_install_dir)) if mismatch: file_component = '{}'.format(','.join(mismatch)) if len(mismatch) > 1: file_component = '{' + file_component + '}' update_cmd = "cp {}/{} {}".format(core_install_dir, file_component, core_source_path) raise RuntimeError("Source files: {} did not match generated files. To update the source files, " "set environment variable GEN_TO_SOURCE or run \"{}\"".format(mismatch, update_cmd))
def generate_outputs(): cwrap_files = filter_by_extension(options.files, '.cwrap') nn_files = filter_by_extension(options.files, 'nn.yaml', '.h') native_files = filter_by_extension(options.files, 'native_functions.yaml') declarations = [ d for file in cwrap_files for d in cwrap_parser.parse(file) ] declarations += nn_parse.run(nn_files) declarations += native_parse.run(native_files) declarations = preprocess_declarations.run(declarations) for fname, env in generators.items(): fm = file_manager if env['name'] == 'CUDA': fm = cuda_file_manager fm.write(fname, GENERATOR_DERIVED, env) # note: this will fill in top_env['type/tensor_method_declarations/definitions'] # and modify the declarations to include any information that will all_backends # be used by function_wrapper.create_derived output_declarations = function_wrapper.create_generic( top_env, declarations) output_declarations = postprocess_output_declarations(output_declarations) file_manager.write("Declarations.yaml", format_yaml(output_declarations)) for backend, density in iterate_types(): generate_storage_type_and_tensor(backend, density, declarations) for backend in extension_backends: generate_type_extension_backend(backend, declarations) for backend, density, scalar_type in legacy_iterate_types(): if density == 'Dense': generate_legacy_th_dispatcher(backend, density, scalar_type, []) core_files = { 'Type.h': TYPE_H, 'Tensor.h': TENSOR_H, 'TensorMethods.h': TENSOR_METHODS_H } for core_file, core_template_file in core_files.items(): core_file_manager.write(core_file, core_template_file, top_env) file_manager.write('TypeExtendedInterface.h', TYPE_EXTENDED_INTERFACE_H, top_env) file_manager.write('TypeDefault.h', TYPE_DEFAULT_H, top_env) file_manager.write('TypeDefault.cpp', TYPE_DEFAULT_CPP, top_env) file_manager.write('LegacyTHDispatcher.h', LEGACY_TH_DISPATCHER_H, top_env) file_manager.write('LegacyTHDispatcher.cpp', LEGACY_TH_DISPATCHER_CPP, top_env) file_manager.write('RegisterCPU.h', REGISTER_CPU_H, top_env) file_manager.write('RegisterCPU.cpp', REGISTER_CPU_CPP, top_env) cuda_file_manager.write('RegisterCUDA.h', REGISTER_CUDA_H, top_env) cuda_file_manager.write('RegisterCUDA.cpp', REGISTER_CUDA_CPP, top_env) file_manager.write('Functions.h', FUNCTIONS_H, top_env) file_manager.write('LegacyTHFunctions.h', LEGACY_TH_FUNCTIONS_H, top_env) file_manager.write('NativeFunctions.h', NATIVE_FUNCTIONS_H, top_env) file_manager.write('ExtensionBackendRegistration.h', EXTENSION_BACKEND_REGISTRATION_H, top_env) file_manager.check_all_files_written() cuda_file_manager.check_all_files_written() # check that generated files match source files core_source_path = os.path.join(options.source_path, 'core') match, mismatch, errors = cmpfiles_with_eol_normalization( core_install_dir, core_source_path, core_files.keys()) if errors: raise RuntimeError( "Error while trying to compare source and generated files for {}. " "Source directory: {}. Generated directory: {}.".format( errors, core_source_path, core_install_dir)) if mismatch: file_component = '{}'.format(','.join(mismatch)) if len(mismatch) > 1: file_component = '{' + file_component + '}' update_cmd = "cp {}/{} {}".format(core_install_dir, file_component, core_source_path) raise RuntimeError( "Source files: {} did not match generated files. To update the source files, " "set environment variable GEN_TO_SOURCE or run \"{}\"".format( mismatch, update_cmd))
def generate_outputs(): cwrap_files = filter_by_extension(options.files, '.cwrap') nn_files = filter_by_extension(options.files, 'nn.yaml', '.h') native_files = filter_by_extension(options.files, 'native_functions.yaml') declarations = [d for file in cwrap_files for d in cwrap_parser.parse(file)] declarations += nn_parse.run(nn_files) declarations += native_parse.run(native_files) declarations = preprocess_declarations.run(declarations) # note: this will fill in top_env['type/tensor_method_declarations/definitions'] # and modify the declarations to include any information that will all_backends # be used by function_wrapper.create_derived output_declarations = function_wrapper.create_generic(top_env, declarations) output_declarations = postprocess_output_declarations(output_declarations) file_manager.write("Declarations.yaml", format_yaml(output_declarations)) # Filter out named-tensor only declarations. # They are necessary in create_generic because that generates Type.h, TensorBody.h, # and TensorMethods.h, all of which are checked in to the codebase and therefore # need to be consistent whether or not BUILD_NAMEDTENSOR is on/off. if not BUILD_NAMEDTENSOR: declarations = [decl for decl in declarations if not is_namedtensor_only_decl(decl)] for backend, density in iterate_types(): generate_storage_type_and_tensor(backend, density, declarations) core_files = { 'TensorBody.h': TENSOR_H, 'TensorMethods.h': TENSOR_METHODS_H, 'OpsAlreadyMovedToC10.cpp': OPS_ALREADY_MOVED_TO_C10_CPP, } for core_file, core_template_file in core_files.items(): core_file_manager.write(core_file, core_template_file, top_env) file_manager.write('TypeDefault.h', TYPE_DEFAULT_H, top_env) file_manager.write('TypeDefault.cpp', TYPE_DEFAULT_CPP, top_env) file_manager.write('RegistrationDeclarations.h', REGISTRATION_DECLARATIONS_H, top_env) file_manager.write('Functions.h', FUNCTIONS_H, top_env) file_manager.write('NativeFunctions.h', NATIVE_FUNCTIONS_H, top_env) file_manager.check_all_files_written() cuda_file_manager.check_all_files_written() # check that generated files match source files core_source_path = os.path.join(options.source_path, 'core') match, mismatch, errors = cmpfiles_with_eol_normalization(core_install_dir, core_source_path, core_files.keys()) if errors: raise RuntimeError("Error while trying to compare source and generated files for {}. " "Source directory: {}. Generated directory: {}." .format(errors, core_source_path, core_install_dir)) if mismatch: file_component = '{}'.format(','.join(mismatch)) if len(mismatch) > 1: file_component = '{' + file_component + '}' update_cmd = "cp {}/{} {}".format(core_install_dir, file_component, core_source_path) raise RuntimeError("Source files: {} did not match generated files. To update the source files, " "set environment variable GEN_TO_SOURCE or run \"{}\"".format(mismatch, update_cmd))
f for f in files if f.endswith('native_functions.yaml') or f.endswith('cuDNN.yaml') ] declarations = [d for file in cwrap_files for d in cwrap_parser.parse(file)] print(nn_files) declarations += nn_parse.run(nn_files) declarations += native_parse.run(native_files) declarations = preprocess_declarations.run(declarations) for fname, env in generators.items(): write(fname, GENERATOR_DERIVED.substitute(env)) # note: this will fill in top_env['type/tensor_method_declarations/definitions'] # and modify the declarations to include any information that will all_backends # be used by function_wrapper.create_derived output_declarations = function_wrapper.create_generic(top_env, declarations) output_declarations = postprocess_output_declarations(output_declarations) write("Declarations.yaml", format_yaml(output_declarations)) # populated by generate_storage_type_and_tensor all_types = [] for backend in backends: for density in densities: for scalar_type in scalar_types: if density == 'Sparse' and scalar_type[0] == 'Half': # THS does not do half type yet. continue all_types.append( generate_storage_type_and_tensor(backend, density, scalar_type, declarations))