def __init__(self): Function.__init__(self) #physical distance for each model self.d = dDGP() self.dcdm = dsfq() self.dcdm.update(factor=0)
import numpy as np from functions.sfq import dL as dsfq import matplotlib.pyplot as plt from functions.parent import Function from functions.dL_PartIII import dL as dDGP #create luminosity distance functions d_DGP = dDGP() d_CDM = dsfq() #redshifts at which to calculate aggregate accuracy z1 = 0.5 z2 = 1.32 #range of z values rangz = np.arange(0., 2., 0.1) #create figure and axes, set figure size fig, ax = plt.subplots(figsize=(4, 3)) #create legend #legend = ([]) #set x and y axis limits ax.set_xlim(left=0.0, right=2.0) plt.xlabel('Redshift z') #label x axis plt.ylabel('$\\Delta d_{L}/d_{L}$') #label y axis #create a function to calculate the aggregate accuracy class agg_accuracy(Function):
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from functions.sfq import dsfq from data.getdata import obtaindata import math cosmo_const = dsfq() # results = obtaindata('data.csv') # for datapoint in results: # z = datapoint[0] # d_z = datapoint[1] cosmo_const.update(factor = 0) fig, ax = plt.subplots() cosmo_const.plot(ax, [0.2,1.7], 0.1) cosmo_const.update(factor=1, at=0.50, tau=0.33, wp=0, wm=0, wf=-1) cosmo_const.plot(ax, [0,1.7], 0.1) cosmo_const.update(factor = 1, at=0.23, tau=0.33, wp=0, wm=0, wf=-1) cosmo_const.plot(ax, [0, 1.7], 0.1) ax.set_xlabel(r'$z$') ax.set_ylabel(r'$d_L$') #to Alice: find out the units fig.show() input()
import numpy as np from functions.sfq import dsfq import matplotlib.pyplot as plt from functions.parent import Function #create luminosity distance functions dsfq1 = dsfq() dcdm = dsfq() #redshifts at which to calculate aggregate accuracy z1 = 0.5 z2 = 1.32 #range of z values rangz = np.arange(0., 2., 0.1) #create figure and axes, set figure size fig, ax = plt.subplots(figsize=(4, 3)) #create legend #dL_legend = ([]) #set x and y axis limits ax.set_xlim(left=0.0, right=2.0) plt.xlabel('Redshift z') #label x axis plt.ylabel('$\\Delta d_{L}/d_{L}$') #label y axis #create a function to calculate the aggregate accuracy class agg_accuracy(Function): def __init__(self):
import numpy as np from functions.sfq import dsfq import matplotlib.pyplot as plt from functions.parent import Function #create luminosity distance functions dsfq2 = dsfq() dcdm = dsfq() #redshifts at which to calculate aggregate accuracy z1 = 0.5 z2 = 1.32 #range of z values rangz = np.arange(0., 2., 0.1) #create figure and axes, set figure size fig, ax = plt.subplots(figsize=(4, 3)) #create legend #dL_legend = ([]) #set x and y axis limits ax.set_xlim(left=0.0, right=2.0) plt.xlabel('Redshift z') #label x axis plt.ylabel('$\\Delta d_{L}/d_{L}$') #label y axis #create a function to calculate the aggregate accuracy class agg_accuracy(Function): def __init__(self):
import math from functions.sfq import dsfq #create luminosity distance functions dsfq1 = dsfq() dsfq2 = dsfq() dcdm = dsfq() #redshifts at which to calculate aggregate accuracy z1 = 0.5 z2 = 1.32 #assign appropriate values in luminosity distance functions for SFQ-I, SFQ-II and Lambda-CDM models dsfq1.update(factor=1, at=0.50, tau=0.33, wp=0, wm=0, wf=-1) dsfq2.update(factor=1, at=0.23, tau=0.33, wp=0, wm=0, wf=-1) dcdm.update(factor=0) #calculate d_L for each model at redshift z=0.5 d_L1 = dsfq1.cal(z1) d_L2 = dsfq2.cal(z1) d_lamcdm = dcdm.cal(z1) #find aggregate accuracy for SFQ-I model aggy1 = abs((d_L1 - d_lamcdm) / d_L1) print('sfq1 (z = ' + str(z1) + '):' + str(aggy1)) #find aggregate accuracy for SFQ-I model aggy2 = abs((d_L2 - d_lamcdm) / d_L2) print('sfq2 (z = ' + str(z1) + '):' + str(aggy2)) #calculate d_L for each model at redshift z=1.32 d_L1 = dsfq1.cal(z2) d_L2 = dsfq2.cal(z2)