def Algorithm(inputData, outputData, outputList, parameters, param): train_x = inputData[:, 0:4000] train_y = outputData[:, 0:4000] test_x = inputData[:, 4000:4600] test_y = outputData[:, 4000:4600] test_y_List = outputList if (param == True): startTime = time.time() parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations=10000, print_cost=True) endTime = time.time() t1 = time.time() pred_test, cost = functions.predict(test_x, test_y, parameters) t2 = time.time() avgError = functions.averageError(pred_test, test_y) outList.append(pred_test[0]) outList.append(test_y[0]) outList.append([cost]) outList.append([avgError]) if (param == True): outList.append([endTime - startTime]) outList.append([t2 - t1]) costList = [] averageErrorList = [] for j in range(0, np.shape(test_y_List)[0]): pred_test, cost = functions.predict(test_x, test_y_List[j][:, 4000:4600], parameters) test_x = np.concatenate((test_x[1:6, :], pred_test, test_x[6:, :]), 0) costList.append(cost) averageError = functions.averageError(pred_test, test_y_List[j][:, 4000:4600]) averageErrorList.append(averageError) outList.append(costList) outList.append(averageErrorList)
def CostList(parameters): costList = [] averageErrorList = [] for i in range(0 + predictionData.p, 136 - predictionData.p): X, Y, Y_List = predictionData.DataSet(predictionData.postMile[i]) pred_test, cost = functions.predict(X[:, 4000:4600], Y[:, 4000:4600], parameters) averageError = functions.averageError(pred_test, Y[:, 4000:4600]) costList.append(cost) averageErrorList.append(averageError) outList.append(costList) outList.append(averageErrorList)
import functions test_x = predictionData.inputData[:, 4000:4600] test_y = predictionData.outputData[:, 4000:4600] print(np.shape(test_y)) initial_val = test_x[:, 1] def MovingAverage(inputArray): #weights = np.array([1.0/21, 2.0/21, 3.0/21, 4.0/21, 5.0/21, 6.0/21]) #inputArray = np.multiply(inputArray, weights) return np.average(inputArray) predict_y = [] inputArray = initial_val print(inputArray) for i in range(0, np.shape(test_x)[1]): print(inputArray) y = MovingAverage(test_x[:, i:i + 1]) #inputArray = np.append(inputArray[1:], y) predict_y.append(y) cost = functions.compute_cost(predict_y, test_y) averageError = functions.averageError(predict_y, test_y) print(cost) print(averageError)