gamma1, gamma2 = 0.5, 0.5 data = dict() countries = ["Italy", "Canada", "Serbia", "Ukraine", "Egypt", "Peru"] r = 1.3 rV = 1.0 / 100 vaccination_strategy = "old_first" model = "vaccine_rate" for country in countries: print(country) data[country] = dict() # import country country_dict = import_country(country, "../../data/countries/") # initial conditions ics = np.zeros((16, 20)) for k in range(16): ics[k, 4] = eps**(-1) / (mu**(-1) + omega**(-1) + eps**(-1)) * i0 * country_dict["Nk"][k] ics[k, 5] = omega**(-1) / (mu**(-1) + omega**(-1) + eps**(-1)) * i0 * country_dict["Nk"][k] ics[k, 6] = f * mu**(-1) / (mu**(-1) + omega**(-1) + eps**(-1)) * i0 * country_dict["Nk"][k] ics[k, 7] = (1 - f) * mu**(-1) / (mu**(-1) + omega**(-1) + eps**(-1)) * i0 * country_dict["Nk"][k] ics[k, 9] = r0 * country_dict["Nk"][k] ics[k, 0] = country_dict["Nk"][k] - ics[k, 4] - ics[k, 5] - ics[
r = 1.0 alpha, gamma, rV, VES, VEM = 0.0, 0.0, 0.0, 0.0, 0.0 # number of compartment and age groups ncomp = 20 nage = 16 # parse basin name #parser = argparse.ArgumentParser(description='Optional app description') #parser.add_argument('basin', type=str, help='name of the basin') #args = parser.parse_args() #basin = args.basin basin = "Italy" # import country country_dict = import_country(basin, "../../data/countries/") # I0 new_pos = country_dict["cases"].loc[country_dict["cases"]["year_week"] == "2020-35"]["weekly_count"].values[0] # R(t=0) r0 = get_totR("../../data/", start_date, country_dict["country"]) / country_dict["Nk"].sum() # pre-compute contacts matrices Cs = {} date, dates = start_date, [start_date] for i in range((end_date - start_date).days): Cs[date] = update_contacts(country_dict, date) date += timedelta(days=1)