# 'RH', # 'wind', # 'rain' ] # data.drop(labels= labels,axis= 1,inplace =True) err = [] err1 = [] err2 = [] err3 = [] err4 = [] out = [] for i in range(75, 100, 1): out.append(float(i) / 100) d = remove_outlier_h(data, 'area', float(i) / 100) y = d.area plt.show() y = d.area x = d.drop(labels=['area'], axis=1) x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=10, test_size=0.3) reg = SVR(kernel='rbf', degree=1, gamma='auto', coef0=0.0, tol=0.001, C=1.0,
# 'X', # 'Y', # 'month', # 'day', # 'FFMC', # 'DMC', # 'DC', # 'ISI', # 'temp', # 'RH', # 'wind', # 'rain' ] data.drop(labels=labels, axis=1, inplace=True) d = remove_outlier_h(data, 'area', 0.85) y = d.area x = d.drop(labels=['area'], axis=1) x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=10, test_size=0.3) err = [] err1 = [] err2 = [] err3 = [] err4 = [] out = [] for i in range(1, 100):
import pandas as pd import matplotlib.pyplot as plt import functions as fnc import math data = pd.read_csv("../forestfires.csv") # data = data.drop(labels=['day'],axis=1) data.month.replace(('jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'), (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), inplace=True) data.day.replace(('mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'), (1, 2, 3, 4, 5, 6, 7), inplace=True) d = fnc.remove_outlier_h(data, 'area', 0.9) y = d.area plt.title("Burned area in ha") plt.ylabel("Frequency") plt.hist(y) y = list(y) print(len(y)) plt.show()