def grow_decision_tree(df_train, df_test, var_list, output_var): trees, accuracies = [], [] alpha = 0 root_node_unpruned = grow_unpruned_tree(df_train, var_list, output_var) cond = True while cond: root_node = copy.deepcopy(root_node_unpruned) prune(root_node, df_train, var_list, output_var, df_test, root_node, alpha) acc = test_accuracy(root_node, df_train, var_list, output_var, df_test) trees.append(root_node) accuracies.append(acc) if root_node.left == None and root_node.right == None: break alpha += 0.02 final_model = trees[accuracies.index(max(accuracies))] return final_model
test_result_11_400 = functions.extract_values( shp=file_test11_shp, raster='/Volumes/ga87rif/Study Project/Result/New/A_result_09_100.tif') np.save('/Volumes/ga87rif/Study Project/Samples/A_test_result_11_400.npy', test_result_11_400) test_result_11_500 = functions.extract_values( shp=file_test11_shp, raster='/Volumes/ga87rif/Study Project/Result/New/A_result_09_100.tif') np.save('/Volumes/ga87rif/Study Project/Samples/A_test_result_11_500.npy', test_result_11_500) #----------------------------------------------------------------------------------------------- # calculate accuracy functions.test_accuracy(year=2009, trees=100, test_array=test_result_09_100, gt_test_array=test09) functions.test_accuracy(year=2009, trees=200, test_array=test_result_09_100, gt_test_array=test09) functions.test_accuracy(year=2009, trees=300, test_array=test_result_09_100, gt_test_array=test09) functions.test_accuracy(year=2009, trees=400, test_array=test_result_09_100, gt_test_array=test09) functions.test_accuracy(year=2009, trees=500,
model = models.vgg11() # 5. Build Custom Classifier from collections import OrderedDict classifier = nn.Sequential( OrderedDict([('fc1', nn.Linear(25088, 5000)), ('relu', nn.ReLU()), ('drop', nn.Dropout(p=0.5)), ('fc2', nn.Linear(5000, 3)), ('output', nn.LogSoftmax(dim=1))])) model.classifier = classifier # 6. Loss function and gradient descent criterion = nn.NLLLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 7. model training model = functions.train_classifier(model, train_loader, validate_loader, optimizer, criterion) # 8. test accuracy functions.test_accuracy(model, test_loader) # 9. model save model_save_path = r"C:/Users/LG/Desktop/ksb/3. CODE/model/" filename = 'sepa_image_classifier2.pth' functions.save_checkpoint(model, training_dataset, model_save_path, filename)
from functions import test_accuracy, convert_csv_to_Q # load a.i. file_path = 'pickled_brain3.csv' Q = convert_csv_to_Q(file_path) # test print("Begin testing.") number_of_games_per_unit_test = 10000 test_accuracy(number_of_games_per_unit_test, Q) print("Done testing.\n")