def test_vq_shape():
    inputs = torch.rand((2, 3, 5, 7), dtype=torch.float32, requires_grad=True)
    codebook = torch.rand((11, 7), dtype=torch.float32, requires_grad=True)
    indices = vq(inputs, codebook)

    assert indices.size() == (2, 3, 5)
    assert not indices.requires_grad
    assert indices.dtype == torch.int64
def test_vq():
    inputs = torch.rand((2, 3, 5, 7), dtype=torch.float32, requires_grad=True)
    codebook = torch.rand((11, 7), dtype=torch.float32, requires_grad=True)
    indices = vq(inputs, codebook)

    differences = inputs.unsqueeze(3) - codebook
    distances = torch.norm(differences, p=2, dim=4)

    _, indices_torch = torch.min(distances, dim=3)

    assert np.allclose(indices.numpy(), indices_torch.numpy())
def test_vq_st_gradient2():
    inputs = torch.rand((2, 3, 5, 7), dtype=torch.float32, requires_grad=True)
    codebook = torch.rand((11, 7), dtype=torch.float32, requires_grad=True)
    codes, _ = vq_st(inputs, codebook)

    indices = vq(inputs, codebook)
    codes_torch = torch.embedding(codebook, indices, padding_idx=-1,
        scale_grad_by_freq=False, sparse=False)

    grad_output = torch.rand((2, 3, 5, 7), dtype=torch.float32)
    grad_codebook, = torch.autograd.grad(codes, codebook,
        grad_outputs=[grad_output])
    grad_codebook_torch, = torch.autograd.grad(codes_torch, codebook,
        grad_outputs=[grad_output])

    # Gradient is the same as torch.embedding function
    assert grad_codebook.size() == (11, 7)
    assert np.allclose(grad_codebook.numpy(), grad_codebook_torch.numpy())
예제 #4
0
파일: acn_models.py 프로젝트: johannah/ACN
 def forward(self, z_e_x):
     z_e_x_ = z_e_x.permute(0, 2, 3, 1).contiguous()
     latents = vq(z_e_x_, self.embedding.weight)
     return latents