fuzz1means = [sum(cuts[i1]) / len(cuts[i1]) for cuts in RCs_cuts] fuzz1_ranks = TOPSIS.getCrispRanks(fuzz1means) RC_UC_meas1 = [ [ID] for ID in alt_IDs ] #capture uncertainty as measured by ratio of 0.1 level support to value at m=1.0 for i in range(len(RC_UC_meas1)): RC_UC_meas1[i].append((RCs_cuts[i][alphas.index(0.1)][1] - - RCs_cuts[i][alphas.index(0.1)][0])/ \ RCs_cuts[i][alphas.index(1.0)][1]) #get & diplay dominance (possibility) matrix DM = [[a] for a in alt_IDs] for i in range(len(alt_IDs)): DM_row = [] for j in range(alts): d = fuzzy.dominance_AlphaCut(alphas, RCs_cuts[i], alphas, RCs_cuts[j]) #get dominance of alt i over alt j DM_row.append(d) DM[i].append(DM_row) print 'Fuzzy Dominance Matrix' for i in range(len(DM)): print DM[i][0], ':', [str(x)[0:5] for x in DM[i][1]], ':', str( min(DM[i][1]))[0:5], ':', str(sum(DM[i][1]) / len(DM[i][1]))[0:5] #rank monte carlo fit means prob_ranks = TOPSIS.getCrispRanks([nf[0] for nf in norm_fits]) #get monte carlo CIs CIs = [] for i in range(len(full_RCs)): m, cl, cu = confidence_interval(full_RCs[i], confidence=alpha)
#get mean of alpha cut at 1.0 and rank them i1 = alphas.index(1.0) fuzz1means = [sum(cuts[i1])/len(cuts[i1]) for cuts in P_cuts] fuzz1_ranks = AHP.getCrispRanks(fuzz1means) P_UC_meas1 = [[ID] for ID in alt_IDs] #capture uncertainty as measured by ratio of 0.1 level support to value at m=1.0 for i in range(len(P_UC_meas1)): P_UC_meas1[i].append((P_cuts[i][alphas.index(0.1)][1] - - P_cuts[i][alphas.index(0.1)][0])/ \ P_cuts[i][alphas.index(1.0)][1]) #get & diplay dominance (possibility) matrix DM = [[a] for a in alt_IDs]; for i in range(alts): DM_row = [] for j in range(alts): d = fuzz.dominance_AlphaCut(alphas, P_cuts[i], alphas, P_cuts[j]) #get dominance of alt i over alt j DM_row.append(d) DM[i].append(DM_row) print '\n' print 'Fuzzy Dominance Matrix' for i in range(len(DM)): print DM[i][0], ':', [str(x)[0:5] for x in DM[i][1]], ':', str(min(DM[i][1]))[0:5], ':', str(sum(DM[i][1])/len(DM[i][1]))[0:5] #rank monte carlo fit means prob_ranks = AHP.getCrispRanks([nf[0] for nf in norm_fits]) #get monte carlo CIs CIs = [] for i in range(len(full_Ps)): m, cl, cu = confidence_interval(full_Ps[i], confidence=alpha)
#get mean of alpha cut at 1.0 and rank them i1 = alphas.index(1.0) fuzz1means = [sum(cuts[i1])/len(cuts[i1]) for cuts in RCs_cuts] fuzz1_ranks = TOPSIS.getCrispRanks(fuzz1means) RC_UC_meas1 = [[ID] for ID in alt_IDs] #capture uncertainty as measured by ratio of 0.1 level support to value at m=1.0 for i in range(len(RC_UC_meas1)): RC_UC_meas1[i].append((RCs_cuts[i][alphas.index(0.1)][1] - - RCs_cuts[i][alphas.index(0.1)][0])/ \ RCs_cuts[i][alphas.index(1.0)][1]) #get & diplay dominance (possibility) matrix DM = [[a] for a in alt_IDs]; for i in range(len(alt_IDs)): DM_row = [] for j in range(alts): d = fuzzy.dominance_AlphaCut(alphas, RCs_cuts[i], alphas, RCs_cuts[j]) #get dominance of alt i over alt j DM_row.append(d) DM[i].append(DM_row) print 'Fuzzy Dominance Matrix' for i in range(len(DM)): print DM[i][0], ':', [str(x)[0:5] for x in DM[i][1]], ':', str(min(DM[i][1]))[0:5], ':', str(sum(DM[i][1])/len(DM[i][1]))[0:5] #rank monte carlo fit means prob_ranks = TOPSIS.getCrispRanks([nf[0] for nf in norm_fits]) #get monte carlo CIs CIs = [] for i in range(len(full_RCs)): m, cl, cu = confidence_interval(full_RCs[i], confidence=alpha) CIs.append([m, cl, cu])
fuzz1means = [sum(cuts[i1]) / len(cuts[i1]) for cuts in P_cuts] fuzz1_ranks = AHP.getCrispRanks(fuzz1means) P_UC_meas1 = [ [ID] for ID in alt_IDs ] #capture uncertainty as measured by ratio of 0.1 level support to value at m=1.0 for i in range(len(P_UC_meas1)): P_UC_meas1[i].append((P_cuts[i][alphas.index(0.1)][1] - - P_cuts[i][alphas.index(0.1)][0])/ \ P_cuts[i][alphas.index(1.0)][1]) #get & diplay dominance (possibility) matrix DM = [[a] for a in alt_IDs] for i in range(alts): DM_row = [] for j in range(alts): d = fuzz.dominance_AlphaCut(alphas, P_cuts[i], alphas, P_cuts[j]) #get dominance of alt i over alt j DM_row.append(d) DM[i].append(DM_row) print '\n' print 'Fuzzy Dominance Matrix' for i in range(len(DM)): print DM[i][0], ':', [str(x)[0:5] for x in DM[i][1]], ':', str( min(DM[i][1]))[0:5], ':', str(sum(DM[i][1]) / len(DM[i][1]))[0:5] #rank monte carlo fit means prob_ranks = AHP.getCrispRanks([nf[0] for nf in norm_fits]) #get monte carlo CIs CIs = [] for i in range(len(full_Ps)):