def __init__(self,amp=1.,hr=1./3.,hz=1./16.,
                 maxiter=_MAXITER,tol=0.001,normalize=False,
                 ro=None,vo=None,
                 new=True,kmaxFac=2.,glorder=10):
        """
        NAME:

           __init__

        PURPOSE:

           initialize a double-exponential disk potential

        INPUT:

           amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass density or Gxmass density

           hr - disk scale-length (can be Quantity)

           hz - scale-height (can be Quantity)

           tol - relative accuracy of potential-evaluations

           maxiter - scipy.integrate keyword

           normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

           ro=, vo= distance and velocity scales for translation into internal units (default from configuration file)

        OUTPUT:

           DoubleExponentialDiskPotential object

        HISTORY:

           2010-04-16 - Written - Bovy (NYU)

           2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS)

        """
        Potential.__init__(self,amp=amp,ro=ro,vo=vo,amp_units='density')
        if _APY_LOADED and isinstance(hr,units.Quantity):
            hr= hr.to(units.kpc).value/self._ro
        if _APY_LOADED and isinstance(hz,units.Quantity):
            hz= hz.to(units.kpc).value/self._ro
        self.hasC= True
        self._kmaxFac= kmaxFac
        self._glorder= glorder
        self._hr= hr
        self._scale= self._hr
        self._hz= hz
        self._alpha= 1./self._hr
        self._beta= 1./self._hz
        self._gamma= self._alpha/self._beta
        self._maxiter= maxiter
        self._tol= tol
        self._zforceNotSetUp= True #We have not calculated a typical Kz yet
        #Setup j0 zeros etc.
        self._glx, self._glw= nu.polynomial.legendre.leggauss(self._glorder)
        self._nzeros=100
        #j0 for potential and z
        self._j0zeros= nu.zeros(self._nzeros+1)
        self._j0zeros[1:self._nzeros+1]= special.jn_zeros(0,self._nzeros)
        self._dj0zeros= self._j0zeros-nu.roll(self._j0zeros,1)
        self._dj0zeros[0]= self._j0zeros[0]
        #j1 for R
        self._j1zeros= nu.zeros(self._nzeros+1)
        self._j1zeros[1:self._nzeros+1]= special.jn_zeros(1,self._nzeros)
        self._dj1zeros= self._j1zeros-nu.roll(self._j1zeros,1)
        self._dj1zeros[0]= self._j1zeros[0]
        #j2 for R2deriv
        self._j2zeros= nu.zeros(self._nzeros+1)
        self._j2zeros[1:self._nzeros+1]= special.jn_zeros(2,self._nzeros)
        self._dj2zeros= self._j2zeros-nu.roll(self._j2zeros,1)
        self._dj2zeros[0]= self._j2zeros[0]
        if normalize or \
                (isinstance(normalize,(int,float)) \
                     and not isinstance(normalize,bool)): #pragma: no cover
            self.normalize(normalize)
        #Load Kepler potential for large R
        self._kp= KeplerPotential(normalize=4.*nu.pi/self._alpha**2./self._beta)
예제 #2
0
    def __init__(self,
                 amp=1.,
                 hr=1. / 3.,
                 hz=1. / 16.,
                 maxiter=_MAXITER,
                 tol=0.001,
                 normalize=False,
                 ro=None,
                 vo=None,
                 new=True,
                 kmaxFac=2.,
                 glorder=10):
        """
        NAME:

           __init__

        PURPOSE:

           initialize a double-exponential disk potential

        INPUT:

           amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass density or Gxmass density

           hr - disk scale-length (can be Quantity)

           hz - scale-height (can be Quantity)

           tol - relative accuracy of potential-evaluations

           maxiter - scipy.integrate keyword

           normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

           ro=, vo= distance and velocity scales for translation into internal units (default from configuration file)

        OUTPUT:

           DoubleExponentialDiskPotential object

        HISTORY:

           2010-04-16 - Written - Bovy (NYU)

           2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS)

        """
        Potential.__init__(self, amp=amp, ro=ro, vo=vo, amp_units='density')
        if _APY_LOADED and isinstance(hr, units.Quantity):
            hr = hr.to(units.kpc).value / self._ro
        if _APY_LOADED and isinstance(hz, units.Quantity):
            hz = hz.to(units.kpc).value / self._ro
        self.hasC = True
        self._kmaxFac = kmaxFac
        self._glorder = glorder
        self._hr = hr
        self._scale = self._hr
        self._hz = hz
        self._alpha = 1. / self._hr
        self._beta = 1. / self._hz
        self._gamma = self._alpha / self._beta
        self._maxiter = maxiter
        self._tol = tol
        self._zforceNotSetUp = True  #We have not calculated a typical Kz yet
        #Setup j0 zeros etc.
        self._glx, self._glw = nu.polynomial.legendre.leggauss(self._glorder)
        self._nzeros = 100
        #j0 for potential and z
        self._j0zeros = nu.zeros(self._nzeros + 1)
        self._j0zeros[1:self._nzeros + 1] = special.jn_zeros(0, self._nzeros)
        self._dj0zeros = self._j0zeros - nu.roll(self._j0zeros, 1)
        self._dj0zeros[0] = self._j0zeros[0]
        #j1 for R
        self._j1zeros = nu.zeros(self._nzeros + 1)
        self._j1zeros[1:self._nzeros + 1] = special.jn_zeros(1, self._nzeros)
        self._dj1zeros = self._j1zeros - nu.roll(self._j1zeros, 1)
        self._dj1zeros[0] = self._j1zeros[0]
        #j2 for R2deriv
        self._j2zeros = nu.zeros(self._nzeros + 1)
        self._j2zeros[1:self._nzeros + 1] = special.jn_zeros(2, self._nzeros)
        self._dj2zeros = self._j2zeros - nu.roll(self._j2zeros, 1)
        self._dj2zeros[0] = self._j2zeros[0]
        if normalize or \
                (isinstance(normalize,(int,float)) \
                     and not isinstance(normalize,bool)): #pragma: no cover
            self.normalize(normalize)
        #Load Kepler potential for large R
        self._kp = KeplerPotential(normalize=4. * nu.pi / self._alpha**2. /
                                   self._beta)
class DoubleExponentialDiskPotential(Potential):
    """Class that implements the double exponential disk potential

    .. math::

        \\rho(R,z) = \\mathrm{amp}\\,\\exp\\left(-R/h_R-|z|/h_z\\right)

    """
    def __init__(self,amp=1.,hr=1./3.,hz=1./16.,
                 maxiter=_MAXITER,tol=0.001,normalize=False,
                 ro=None,vo=None,
                 new=True,kmaxFac=2.,glorder=10):
        """
        NAME:

           __init__

        PURPOSE:

           initialize a double-exponential disk potential

        INPUT:

           amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass density or Gxmass density

           hr - disk scale-length (can be Quantity)

           hz - scale-height (can be Quantity)

           tol - relative accuracy of potential-evaluations

           maxiter - scipy.integrate keyword

           normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

           ro=, vo= distance and velocity scales for translation into internal units (default from configuration file)

        OUTPUT:

           DoubleExponentialDiskPotential object

        HISTORY:

           2010-04-16 - Written - Bovy (NYU)

           2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS)

        """
        Potential.__init__(self,amp=amp,ro=ro,vo=vo,amp_units='density')
        if _APY_LOADED and isinstance(hr,units.Quantity):
            hr= hr.to(units.kpc).value/self._ro
        if _APY_LOADED and isinstance(hz,units.Quantity):
            hz= hz.to(units.kpc).value/self._ro
        self.hasC= True
        self._kmaxFac= kmaxFac
        self._glorder= glorder
        self._hr= hr
        self._scale= self._hr
        self._hz= hz
        self._alpha= 1./self._hr
        self._beta= 1./self._hz
        self._gamma= self._alpha/self._beta
        self._maxiter= maxiter
        self._tol= tol
        self._zforceNotSetUp= True #We have not calculated a typical Kz yet
        #Setup j0 zeros etc.
        self._glx, self._glw= nu.polynomial.legendre.leggauss(self._glorder)
        self._nzeros=100
        #j0 for potential and z
        self._j0zeros= nu.zeros(self._nzeros+1)
        self._j0zeros[1:self._nzeros+1]= special.jn_zeros(0,self._nzeros)
        self._dj0zeros= self._j0zeros-nu.roll(self._j0zeros,1)
        self._dj0zeros[0]= self._j0zeros[0]
        #j1 for R
        self._j1zeros= nu.zeros(self._nzeros+1)
        self._j1zeros[1:self._nzeros+1]= special.jn_zeros(1,self._nzeros)
        self._dj1zeros= self._j1zeros-nu.roll(self._j1zeros,1)
        self._dj1zeros[0]= self._j1zeros[0]
        #j2 for R2deriv
        self._j2zeros= nu.zeros(self._nzeros+1)
        self._j2zeros[1:self._nzeros+1]= special.jn_zeros(2,self._nzeros)
        self._dj2zeros= self._j2zeros-nu.roll(self._j2zeros,1)
        self._dj2zeros[0]= self._j2zeros[0]
        if normalize or \
                (isinstance(normalize,(int,float)) \
                     and not isinstance(normalize,bool)): #pragma: no cover
            self.normalize(normalize)
        #Load Kepler potential for large R
        self._kp= KeplerPotential(normalize=4.*nu.pi/self._alpha**2./self._beta)

    def _evaluate(self,R,z,phi=0.,t=0.,dR=0,dphi=0):
        """
        NAME:
           _evaluate
        PURPOSE:
           evaluate the potential at (R,z)
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           potential at (R,z)
        HISTORY:
           2010-04-16 - Written - Bovy (NYU)
           2012-12-26 - New method using Gaussian quadrature between zeros - Bovy (IAS)
        DOCTEST:
           >>> doubleExpPot= DoubleExponentialDiskPotential()
           >>> r= doubleExpPot(1.,0) #doctest: +ELLIPSIS
           ...
           >>> assert( r+1.89595350484)**2.< 10.**-6.
        """
        if True:
            if isinstance(R,float):
                floatIn= True
                R= nu.array([R])
                z= nu.array([z])
            else:
                floatIn= False
            out= nu.empty(len(R))
            indx= (R <= 6.)
            out[True-indx]= self._kp(R[True-indx],z[True-indx])
            R4max= nu.copy(R)
            R4max[(R < 1.)]= 1.
            kmax= self._kmaxFac*self._beta
            for jj in range(len(R)):
                if not indx[jj]: continue
                maxj0zeroIndx= nu.argmin((self._j0zeros-kmax*R4max[jj])**2.) #close enough
                ks= nu.array([0.5*(self._glx+1.)*self._dj0zeros[ii+1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx)]).flatten()
                weights= nu.array([self._glw*self._dj0zeros[ii+1] for ii in range(maxj0zeroIndx)]).flatten()
                evalInt= special.jn(0,ks*R[jj])*(self._alpha**2.+ks**2.)**-1.5*(self._beta*nu.exp(-ks*nu.fabs(z[jj]))-ks*nu.exp(-self._beta*nu.fabs(z[jj])))/(self._beta**2.-ks**2.)
                out[jj]= -2.*nu.pi*self._alpha*nu.sum(weights*evalInt)
            if floatIn: return out[0]
            else: return out
    
    def _Rforce(self,R,z,phi=0.,t=0.):
        """
        NAME:
           Rforce
        PURPOSE:
           evaluate radial force K_R  (R,z)
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           K_R (R,z)
        HISTORY:
           2010-04-16 - Written - Bovy (NYU)
        DOCTEST:
        """
        if True:
            if isinstance(R,nu.ndarray):
                if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z
                out= nu.array([self._Rforce(rr,zz) for rr,zz in zip(R,z)])
                return out
            if (R > 16.*self._hr or R > 6.) and hasattr(self,'_kp'): return self._kp.Rforce(R,z)
            if R < 1.: R4max= 1.
            else: R4max= R
            kmax= self._kmaxFac*self._beta
            kmax= 2.*self._kmaxFac*self._beta
            maxj1zeroIndx= nu.argmin((self._j1zeros-kmax*R4max)**2.) #close enough
            ks= nu.array([0.5*(self._glx+1.)*self._dj1zeros[ii+1] + self._j1zeros[ii] for ii in range(maxj1zeroIndx)]).flatten()
            weights= nu.array([self._glw*self._dj1zeros[ii+1] for ii in range(maxj1zeroIndx)]).flatten()
            evalInt= ks*special.jn(1,ks*R)*(self._alpha**2.+ks**2.)**-1.5*(self._beta*nu.exp(-ks*nu.fabs(z))-ks*nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks**2.)
            return -2.*nu.pi*self._alpha*nu.sum(weights*evalInt)
    
    def _zforce(self,R,z,phi=0.,t=0.):
        """
        NAME:
           zforce
        PURPOSE:
           evaluate vertical force K_z  (R,z)
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           K_z (R,z)
        HISTORY:
           2010-04-16 - Written - Bovy (NYU)
        DOCTEST:
        """
        if True:
            if isinstance(R,nu.ndarray):
                if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z
                out= nu.array([self._zforce(rr,zz) for rr,zz in zip(R,z)])
                return out
            if R > 16.*self._hr or R > 6.: return self._kp.zforce(R,z)
            if R < 1.: R4max= 1.
            else: R4max= R
            kmax= self._kmaxFac*self._beta
            maxj0zeroIndx= nu.argmin((self._j0zeros-kmax*R4max)**2.) #close enough
            ks= nu.array([0.5*(self._glx+1.)*self._dj0zeros[ii+1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx)]).flatten()
            weights= nu.array([self._glw*self._dj0zeros[ii+1] for ii in range(maxj0zeroIndx)]).flatten()
            evalInt= ks*special.jn(0,ks*R)*(self._alpha**2.+ks**2.)**-1.5*(nu.exp(-ks*nu.fabs(z))-nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks**2.)
            if z > 0.:
                return -2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt)
            else:
                return 2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt)

    def _R2deriv(self,R,z,phi=0.,t=0.):
        """
        NAME:
           R2deriv
        PURPOSE:
           evaluate R2 derivative
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           -d K_R (R,z) d R
        HISTORY:
           2012-12-27 - Written - Bovy (IAS)
        """
        if True:
            if isinstance(R,nu.ndarray):
                if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z
                out= nu.array([self._R2deriv(rr,zz) for rr,zz in zip(R,z)])
                return out
            if R > 16.*self._hr or R > 6.: return self._kp.R2deriv(R,z)
            if R < 1.: R4max= 1.
            else: R4max= R
            kmax= 2.*self._kmaxFac*self._beta
            maxj0zeroIndx= nu.argmin((self._j0zeros-kmax*R4max)**2.) #close enough
            maxj2zeroIndx= nu.argmin((self._j2zeros-kmax*R4max)**2.) #close enough
            ks0= nu.array([0.5*(self._glx+1.)*self._dj0zeros[ii+1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx)]).flatten()
            weights0= nu.array([self._glw*self._dj0zeros[ii+1] for ii in range(maxj0zeroIndx)]).flatten()
            ks2= nu.array([0.5*(self._glx+1.)*self._dj2zeros[ii+1] + self._j2zeros[ii] for ii in range(maxj2zeroIndx)]).flatten()
            weights2= nu.array([self._glw*self._dj2zeros[ii+1] for ii in range(maxj2zeroIndx)]).flatten()
            evalInt0= ks0**2.*special.jn(0,ks0*R)*(self._alpha**2.+ks0**2.)**-1.5*(self._beta*nu.exp(-ks0*nu.fabs(z))-ks0*nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks0**2.)
            evalInt2= ks2**2.*special.jn(2,ks2*R)*(self._alpha**2.+ks2**2.)**-1.5*(self._beta*nu.exp(-ks2*nu.fabs(z))-ks2*nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks2**2.)
            return nu.pi*self._alpha*(nu.sum(weights0*evalInt0)
                                      -nu.sum(weights2*evalInt2))
    
    def _z2deriv(self,R,z,phi=0.,t=0.):
        """
        NAME:
           z2deriv
        PURPOSE:
           evaluate z2 derivative
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           -d K_Z (R,z) d Z
        HISTORY:
           2012-12-26 - Written - Bovy (IAS)
        """
        if True:
            if isinstance(R,nu.ndarray):
                if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z
                out= nu.array([self._z2deriv(rr,zz) for rr,zz in zip(R,z)])
                return out
            if R > 16.*self._hr or R > 6.: return self._kp.z2deriv(R,z)
            if R < 1.: R4max= 1.
            else: R4max= R
            kmax= self._kmaxFac*self._beta
            maxj0zeroIndx= nu.argmin((self._j0zeros-kmax*R4max)**2.) #close enough
            ks= nu.array([0.5*(self._glx+1.)*self._dj0zeros[ii+1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx)]).flatten()
            weights= nu.array([self._glw*self._dj0zeros[ii+1] for ii in range(maxj0zeroIndx)]).flatten()
            evalInt= ks*special.jn(0,ks*R)*(self._alpha**2.+ks**2.)**-1.5*(ks*nu.exp(-ks*nu.fabs(z))-self._beta*nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks**2.)
            return -2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt)

    def _Rzderiv(self,R,z,phi=0.,t=0.):
        """
        NAME:
           Rzderiv
        PURPOSE:
           evaluate the mixed R,z derivative
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           d2phi/dR/dz
        HISTORY:
           2013-08-28 - Written - Bovy (IAS)
        """
        if True:
            if isinstance(R,nu.ndarray):
                if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z
                out= nu.array([self._Rzderiv(rr,zz) for rr,zz in zip(R,z)])
                return out
            if R > 6.: return self._kp.Rzderiv(R,z)
            if R < 1.: R4max= 1.
            else: R4max= R
            kmax= 2.*self._kmaxFac*self._beta
            maxj1zeroIndx= nu.argmin((self._j1zeros-kmax*R4max)**2.) #close enough
            ks= nu.array([0.5*(self._glx+1.)*self._dj1zeros[ii+1] + self._j1zeros[ii] for ii in range(maxj1zeroIndx)]).flatten()
            weights= nu.array([self._glw*self._dj1zeros[ii+1] for ii in range(maxj1zeroIndx)]).flatten()
            evalInt= ks**2.*special.jn(1,ks*R)*(self._alpha**2.+ks**2.)**-1.5*(nu.exp(-ks*nu.fabs(z))-nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks**2.)
            if z >= 0.:
                return -2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt)
            else:
                return 2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt)

    def _dens(self,R,z,phi=0.,t=0.):
        """
        NAME:
           dens
        PURPOSE:
           evaluate the density
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           rho (R,z)
        HISTORY:
           2010-08-08 - Written - Bovy (NYU)
        """
        return nu.exp(-self._alpha*R-self._beta*nu.fabs(z))
예제 #4
0
class DoubleExponentialDiskPotential(Potential):
    """Class that implements the double exponential disk potential

    .. math::

        \\rho(R,z) = \\mathrm{amp}\\,\\exp\\left(-R/h_R-|z|/h_z\\right)

    """
    def __init__(self,
                 amp=1.,
                 hr=1. / 3.,
                 hz=1. / 16.,
                 maxiter=_MAXITER,
                 tol=0.001,
                 normalize=False,
                 ro=None,
                 vo=None,
                 new=True,
                 kmaxFac=2.,
                 glorder=10):
        """
        NAME:

           __init__

        PURPOSE:

           initialize a double-exponential disk potential

        INPUT:

           amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass density or Gxmass density

           hr - disk scale-length (can be Quantity)

           hz - scale-height (can be Quantity)

           tol - relative accuracy of potential-evaluations

           maxiter - scipy.integrate keyword

           normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1.

           ro=, vo= distance and velocity scales for translation into internal units (default from configuration file)

        OUTPUT:

           DoubleExponentialDiskPotential object

        HISTORY:

           2010-04-16 - Written - Bovy (NYU)

           2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS)

        """
        Potential.__init__(self, amp=amp, ro=ro, vo=vo, amp_units='density')
        if _APY_LOADED and isinstance(hr, units.Quantity):
            hr = hr.to(units.kpc).value / self._ro
        if _APY_LOADED and isinstance(hz, units.Quantity):
            hz = hz.to(units.kpc).value / self._ro
        self.hasC = True
        self._kmaxFac = kmaxFac
        self._glorder = glorder
        self._hr = hr
        self._scale = self._hr
        self._hz = hz
        self._alpha = 1. / self._hr
        self._beta = 1. / self._hz
        self._gamma = self._alpha / self._beta
        self._maxiter = maxiter
        self._tol = tol
        self._zforceNotSetUp = True  #We have not calculated a typical Kz yet
        #Setup j0 zeros etc.
        self._glx, self._glw = nu.polynomial.legendre.leggauss(self._glorder)
        self._nzeros = 100
        #j0 for potential and z
        self._j0zeros = nu.zeros(self._nzeros + 1)
        self._j0zeros[1:self._nzeros + 1] = special.jn_zeros(0, self._nzeros)
        self._dj0zeros = self._j0zeros - nu.roll(self._j0zeros, 1)
        self._dj0zeros[0] = self._j0zeros[0]
        #j1 for R
        self._j1zeros = nu.zeros(self._nzeros + 1)
        self._j1zeros[1:self._nzeros + 1] = special.jn_zeros(1, self._nzeros)
        self._dj1zeros = self._j1zeros - nu.roll(self._j1zeros, 1)
        self._dj1zeros[0] = self._j1zeros[0]
        #j2 for R2deriv
        self._j2zeros = nu.zeros(self._nzeros + 1)
        self._j2zeros[1:self._nzeros + 1] = special.jn_zeros(2, self._nzeros)
        self._dj2zeros = self._j2zeros - nu.roll(self._j2zeros, 1)
        self._dj2zeros[0] = self._j2zeros[0]
        if normalize or \
                (isinstance(normalize,(int,float)) \
                     and not isinstance(normalize,bool)): #pragma: no cover
            self.normalize(normalize)
        #Load Kepler potential for large R
        self._kp = KeplerPotential(normalize=4. * nu.pi / self._alpha**2. /
                                   self._beta)

    def _evaluate(self, R, z, phi=0., t=0., dR=0, dphi=0):
        """
        NAME:
           _evaluate
        PURPOSE:
           evaluate the potential at (R,z)
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           potential at (R,z)
        HISTORY:
           2010-04-16 - Written - Bovy (NYU)
           2012-12-26 - New method using Gaussian quadrature between zeros - Bovy (IAS)
        DOCTEST:
           >>> doubleExpPot= DoubleExponentialDiskPotential()
           >>> r= doubleExpPot(1.,0) #doctest: +ELLIPSIS
           ...
           >>> assert( r+1.89595350484)**2.< 10.**-6.
        """
        if True:
            if isinstance(R, float):
                floatIn = True
                R = nu.array([R])
                z = nu.array([z])
            else:
                floatIn = False
            out = nu.empty(len(R))
            indx = (R <= 6.)
            out[True ^ indx] = self._kp(R[True ^ indx], z[True ^ indx])
            R4max = nu.copy(R)
            R4max[(R < 1.)] = 1.
            kmax = self._kmaxFac * self._beta
            for jj in range(len(R)):
                if not indx[jj]: continue
                maxj0zeroIndx = nu.argmin(
                    (self._j0zeros - kmax * R4max[jj])**2.)  #close enough
                ks = nu.array([
                    0.5 * (self._glx + 1.) * self._dj0zeros[ii + 1] +
                    self._j0zeros[ii] for ii in range(maxj0zeroIndx)
                ]).flatten()
                weights = nu.array([
                    self._glw * self._dj0zeros[ii + 1]
                    for ii in range(maxj0zeroIndx)
                ]).flatten()
                evalInt = special.jn(
                    0, ks * R[jj]) * (self._alpha**2. + ks**2.)**-1.5 * (
                        self._beta * nu.exp(-ks * nu.fabs(z[jj])) -
                        ks * nu.exp(-self._beta * nu.fabs(z[jj]))) / (
                            self._beta**2. - ks**2.)
                out[jj] = -2. * nu.pi * self._alpha * nu.sum(weights * evalInt)
            if floatIn: return out[0]
            else: return out

    def _Rforce(self, R, z, phi=0., t=0.):
        """
        NAME:
           Rforce
        PURPOSE:
           evaluate radial force K_R  (R,z)
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           K_R (R,z)
        HISTORY:
           2010-04-16 - Written - Bovy (NYU)
        DOCTEST:
        """
        if True:
            if isinstance(R, nu.ndarray):
                if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z
                out = nu.array([self._Rforce(rr, zz) for rr, zz in zip(R, z)])
                return out
            if (R > 16. * self._hr or R > 6.) and hasattr(self, '_kp'):
                return self._kp.Rforce(R, z)
            if R < 1.: R4max = 1.
            else: R4max = R
            kmax = self._kmaxFac * self._beta
            kmax = 2. * self._kmaxFac * self._beta
            maxj1zeroIndx = nu.argmin(
                (self._j1zeros - kmax * R4max)**2.)  #close enough
            ks = nu.array([
                0.5 * (self._glx + 1.) * self._dj1zeros[ii + 1] +
                self._j1zeros[ii] for ii in range(maxj1zeroIndx)
            ]).flatten()
            weights = nu.array([
                self._glw * self._dj1zeros[ii + 1]
                for ii in range(maxj1zeroIndx)
            ]).flatten()
            evalInt = ks * special.jn(
                1, ks * R) * (self._alpha**2. + ks**2.)**-1.5 * (
                    self._beta * nu.exp(-ks * nu.fabs(z)) -
                    ks * nu.exp(-self._beta * nu.fabs(z))) / (self._beta**2. -
                                                              ks**2.)
            return -2. * nu.pi * self._alpha * nu.sum(weights * evalInt)

    def _zforce(self, R, z, phi=0., t=0.):
        """
        NAME:
           zforce
        PURPOSE:
           evaluate vertical force K_z  (R,z)
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           K_z (R,z)
        HISTORY:
           2010-04-16 - Written - Bovy (NYU)
        DOCTEST:
        """
        if True:
            if isinstance(R, nu.ndarray):
                if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z
                out = nu.array([self._zforce(rr, zz) for rr, zz in zip(R, z)])
                return out
            if R > 16. * self._hr or R > 6.: return self._kp.zforce(R, z)
            if R < 1.: R4max = 1.
            else: R4max = R
            kmax = self._kmaxFac * self._beta
            maxj0zeroIndx = nu.argmin(
                (self._j0zeros - kmax * R4max)**2.)  #close enough
            ks = nu.array([
                0.5 * (self._glx + 1.) * self._dj0zeros[ii + 1] +
                self._j0zeros[ii] for ii in range(maxj0zeroIndx)
            ]).flatten()
            weights = nu.array([
                self._glw * self._dj0zeros[ii + 1]
                for ii in range(maxj0zeroIndx)
            ]).flatten()
            evalInt = ks * special.jn(
                0, ks * R) * (self._alpha**2. + ks**2.)**-1.5 * (nu.exp(
                    -ks * nu.fabs(z)) - nu.exp(-self._beta * nu.fabs(z))) / (
                        self._beta**2. - ks**2.)
            if z > 0.:
                return -2. * nu.pi * self._alpha * self._beta * nu.sum(
                    weights * evalInt)
            else:
                return 2. * nu.pi * self._alpha * self._beta * nu.sum(
                    weights * evalInt)

    def _R2deriv(self, R, z, phi=0., t=0.):
        """
        NAME:
           R2deriv
        PURPOSE:
           evaluate R2 derivative
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           -d K_R (R,z) d R
        HISTORY:
           2012-12-27 - Written - Bovy (IAS)
        """
        if True:
            if isinstance(R, nu.ndarray):
                if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z
                out = nu.array([self._R2deriv(rr, zz) for rr, zz in zip(R, z)])
                return out
            if R > 16. * self._hr or R > 6.: return self._kp.R2deriv(R, z)
            if R < 1.: R4max = 1.
            else: R4max = R
            kmax = 2. * self._kmaxFac * self._beta
            maxj0zeroIndx = nu.argmin(
                (self._j0zeros - kmax * R4max)**2.)  #close enough
            maxj2zeroIndx = nu.argmin(
                (self._j2zeros - kmax * R4max)**2.)  #close enough
            ks0 = nu.array([
                0.5 * (self._glx + 1.) * self._dj0zeros[ii + 1] +
                self._j0zeros[ii] for ii in range(maxj0zeroIndx)
            ]).flatten()
            weights0 = nu.array([
                self._glw * self._dj0zeros[ii + 1]
                for ii in range(maxj0zeroIndx)
            ]).flatten()
            ks2 = nu.array([
                0.5 * (self._glx + 1.) * self._dj2zeros[ii + 1] +
                self._j2zeros[ii] for ii in range(maxj2zeroIndx)
            ]).flatten()
            weights2 = nu.array([
                self._glw * self._dj2zeros[ii + 1]
                for ii in range(maxj2zeroIndx)
            ]).flatten()
            evalInt0 = ks0**2. * special.jn(
                0, ks0 * R) * (self._alpha**2. + ks0**2.)**-1.5 * (
                    self._beta * nu.exp(-ks0 * nu.fabs(z)) -
                    ks0 * nu.exp(-self._beta * nu.fabs(z))) / (self._beta**2. -
                                                               ks0**2.)
            evalInt2 = ks2**2. * special.jn(
                2, ks2 * R) * (self._alpha**2. + ks2**2.)**-1.5 * (
                    self._beta * nu.exp(-ks2 * nu.fabs(z)) -
                    ks2 * nu.exp(-self._beta * nu.fabs(z))) / (self._beta**2. -
                                                               ks2**2.)
            return nu.pi * self._alpha * (nu.sum(weights0 * evalInt0) -
                                          nu.sum(weights2 * evalInt2))

    def _z2deriv(self, R, z, phi=0., t=0.):
        """
        NAME:
           z2deriv
        PURPOSE:
           evaluate z2 derivative
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           -d K_Z (R,z) d Z
        HISTORY:
           2012-12-26 - Written - Bovy (IAS)
        """
        if True:
            if isinstance(R, nu.ndarray):
                if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z
                out = nu.array([self._z2deriv(rr, zz) for rr, zz in zip(R, z)])
                return out
            if R > 16. * self._hr or R > 6.: return self._kp.z2deriv(R, z)
            if R < 1.: R4max = 1.
            else: R4max = R
            kmax = self._kmaxFac * self._beta
            maxj0zeroIndx = nu.argmin(
                (self._j0zeros - kmax * R4max)**2.)  #close enough
            ks = nu.array([
                0.5 * (self._glx + 1.) * self._dj0zeros[ii + 1] +
                self._j0zeros[ii] for ii in range(maxj0zeroIndx)
            ]).flatten()
            weights = nu.array([
                self._glw * self._dj0zeros[ii + 1]
                for ii in range(maxj0zeroIndx)
            ]).flatten()
            evalInt = ks * special.jn(
                0, ks * R) * (self._alpha**2. + ks**2.)**-1.5 * (
                    ks * nu.exp(-ks * nu.fabs(z)) -
                    self._beta * nu.exp(-self._beta * nu.fabs(z))) / (
                        self._beta**2. - ks**2.)
            return -2. * nu.pi * self._alpha * self._beta * nu.sum(
                weights * evalInt)

    def _Rzderiv(self, R, z, phi=0., t=0.):
        """
        NAME:
           Rzderiv
        PURPOSE:
           evaluate the mixed R,z derivative
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           d2phi/dR/dz
        HISTORY:
           2013-08-28 - Written - Bovy (IAS)
        """
        if True:
            if isinstance(R, nu.ndarray):
                if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z
                out = nu.array([self._Rzderiv(rr, zz) for rr, zz in zip(R, z)])
                return out
            if R > 6.: return self._kp.Rzderiv(R, z)
            if R < 1.: R4max = 1.
            else: R4max = R
            kmax = 2. * self._kmaxFac * self._beta
            maxj1zeroIndx = nu.argmin(
                (self._j1zeros - kmax * R4max)**2.)  #close enough
            ks = nu.array([
                0.5 * (self._glx + 1.) * self._dj1zeros[ii + 1] +
                self._j1zeros[ii] for ii in range(maxj1zeroIndx)
            ]).flatten()
            weights = nu.array([
                self._glw * self._dj1zeros[ii + 1]
                for ii in range(maxj1zeroIndx)
            ]).flatten()
            evalInt = ks**2. * special.jn(
                1, ks * R) * (self._alpha**2. + ks**2.)**-1.5 * (nu.exp(
                    -ks * nu.fabs(z)) - nu.exp(-self._beta * nu.fabs(z))) / (
                        self._beta**2. - ks**2.)
            if z >= 0.:
                return -2. * nu.pi * self._alpha * self._beta * nu.sum(
                    weights * evalInt)
            else:
                return 2. * nu.pi * self._alpha * self._beta * nu.sum(
                    weights * evalInt)

    def _dens(self, R, z, phi=0., t=0.):
        """
        NAME:
           dens
        PURPOSE:
           evaluate the density
        INPUT:
           R - Cylindrical Galactocentric radius
           z - vertical height
           phi - azimuth
           t - time
        OUTPUT:
           rho (R,z)
        HISTORY:
           2010-08-08 - Written - Bovy (NYU)
        """
        return nu.exp(-self._alpha * R - self._beta * nu.fabs(z))