def __init__(self,amp=1.,hr=1./3.,hz=1./16., maxiter=_MAXITER,tol=0.001,normalize=False, ro=None,vo=None, new=True,kmaxFac=2.,glorder=10): """ NAME: __init__ PURPOSE: initialize a double-exponential disk potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass density or Gxmass density hr - disk scale-length (can be Quantity) hz - scale-height (can be Quantity) tol - relative accuracy of potential-evaluations maxiter - scipy.integrate keyword normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: DoubleExponentialDiskPotential object HISTORY: 2010-04-16 - Written - Bovy (NYU) 2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS) """ Potential.__init__(self,amp=amp,ro=ro,vo=vo,amp_units='density') if _APY_LOADED and isinstance(hr,units.Quantity): hr= hr.to(units.kpc).value/self._ro if _APY_LOADED and isinstance(hz,units.Quantity): hz= hz.to(units.kpc).value/self._ro self.hasC= True self._kmaxFac= kmaxFac self._glorder= glorder self._hr= hr self._scale= self._hr self._hz= hz self._alpha= 1./self._hr self._beta= 1./self._hz self._gamma= self._alpha/self._beta self._maxiter= maxiter self._tol= tol self._zforceNotSetUp= True #We have not calculated a typical Kz yet #Setup j0 zeros etc. self._glx, self._glw= nu.polynomial.legendre.leggauss(self._glorder) self._nzeros=100 #j0 for potential and z self._j0zeros= nu.zeros(self._nzeros+1) self._j0zeros[1:self._nzeros+1]= special.jn_zeros(0,self._nzeros) self._dj0zeros= self._j0zeros-nu.roll(self._j0zeros,1) self._dj0zeros[0]= self._j0zeros[0] #j1 for R self._j1zeros= nu.zeros(self._nzeros+1) self._j1zeros[1:self._nzeros+1]= special.jn_zeros(1,self._nzeros) self._dj1zeros= self._j1zeros-nu.roll(self._j1zeros,1) self._dj1zeros[0]= self._j1zeros[0] #j2 for R2deriv self._j2zeros= nu.zeros(self._nzeros+1) self._j2zeros[1:self._nzeros+1]= special.jn_zeros(2,self._nzeros) self._dj2zeros= self._j2zeros-nu.roll(self._j2zeros,1) self._dj2zeros[0]= self._j2zeros[0] if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) #Load Kepler potential for large R self._kp= KeplerPotential(normalize=4.*nu.pi/self._alpha**2./self._beta)
def __init__(self, amp=1., hr=1. / 3., hz=1. / 16., maxiter=_MAXITER, tol=0.001, normalize=False, ro=None, vo=None, new=True, kmaxFac=2., glorder=10): """ NAME: __init__ PURPOSE: initialize a double-exponential disk potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass density or Gxmass density hr - disk scale-length (can be Quantity) hz - scale-height (can be Quantity) tol - relative accuracy of potential-evaluations maxiter - scipy.integrate keyword normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: DoubleExponentialDiskPotential object HISTORY: 2010-04-16 - Written - Bovy (NYU) 2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS) """ Potential.__init__(self, amp=amp, ro=ro, vo=vo, amp_units='density') if _APY_LOADED and isinstance(hr, units.Quantity): hr = hr.to(units.kpc).value / self._ro if _APY_LOADED and isinstance(hz, units.Quantity): hz = hz.to(units.kpc).value / self._ro self.hasC = True self._kmaxFac = kmaxFac self._glorder = glorder self._hr = hr self._scale = self._hr self._hz = hz self._alpha = 1. / self._hr self._beta = 1. / self._hz self._gamma = self._alpha / self._beta self._maxiter = maxiter self._tol = tol self._zforceNotSetUp = True #We have not calculated a typical Kz yet #Setup j0 zeros etc. self._glx, self._glw = nu.polynomial.legendre.leggauss(self._glorder) self._nzeros = 100 #j0 for potential and z self._j0zeros = nu.zeros(self._nzeros + 1) self._j0zeros[1:self._nzeros + 1] = special.jn_zeros(0, self._nzeros) self._dj0zeros = self._j0zeros - nu.roll(self._j0zeros, 1) self._dj0zeros[0] = self._j0zeros[0] #j1 for R self._j1zeros = nu.zeros(self._nzeros + 1) self._j1zeros[1:self._nzeros + 1] = special.jn_zeros(1, self._nzeros) self._dj1zeros = self._j1zeros - nu.roll(self._j1zeros, 1) self._dj1zeros[0] = self._j1zeros[0] #j2 for R2deriv self._j2zeros = nu.zeros(self._nzeros + 1) self._j2zeros[1:self._nzeros + 1] = special.jn_zeros(2, self._nzeros) self._dj2zeros = self._j2zeros - nu.roll(self._j2zeros, 1) self._dj2zeros[0] = self._j2zeros[0] if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) #Load Kepler potential for large R self._kp = KeplerPotential(normalize=4. * nu.pi / self._alpha**2. / self._beta)
class DoubleExponentialDiskPotential(Potential): """Class that implements the double exponential disk potential .. math:: \\rho(R,z) = \\mathrm{amp}\\,\\exp\\left(-R/h_R-|z|/h_z\\right) """ def __init__(self,amp=1.,hr=1./3.,hz=1./16., maxiter=_MAXITER,tol=0.001,normalize=False, ro=None,vo=None, new=True,kmaxFac=2.,glorder=10): """ NAME: __init__ PURPOSE: initialize a double-exponential disk potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass density or Gxmass density hr - disk scale-length (can be Quantity) hz - scale-height (can be Quantity) tol - relative accuracy of potential-evaluations maxiter - scipy.integrate keyword normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: DoubleExponentialDiskPotential object HISTORY: 2010-04-16 - Written - Bovy (NYU) 2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS) """ Potential.__init__(self,amp=amp,ro=ro,vo=vo,amp_units='density') if _APY_LOADED and isinstance(hr,units.Quantity): hr= hr.to(units.kpc).value/self._ro if _APY_LOADED and isinstance(hz,units.Quantity): hz= hz.to(units.kpc).value/self._ro self.hasC= True self._kmaxFac= kmaxFac self._glorder= glorder self._hr= hr self._scale= self._hr self._hz= hz self._alpha= 1./self._hr self._beta= 1./self._hz self._gamma= self._alpha/self._beta self._maxiter= maxiter self._tol= tol self._zforceNotSetUp= True #We have not calculated a typical Kz yet #Setup j0 zeros etc. self._glx, self._glw= nu.polynomial.legendre.leggauss(self._glorder) self._nzeros=100 #j0 for potential and z self._j0zeros= nu.zeros(self._nzeros+1) self._j0zeros[1:self._nzeros+1]= special.jn_zeros(0,self._nzeros) self._dj0zeros= self._j0zeros-nu.roll(self._j0zeros,1) self._dj0zeros[0]= self._j0zeros[0] #j1 for R self._j1zeros= nu.zeros(self._nzeros+1) self._j1zeros[1:self._nzeros+1]= special.jn_zeros(1,self._nzeros) self._dj1zeros= self._j1zeros-nu.roll(self._j1zeros,1) self._dj1zeros[0]= self._j1zeros[0] #j2 for R2deriv self._j2zeros= nu.zeros(self._nzeros+1) self._j2zeros[1:self._nzeros+1]= special.jn_zeros(2,self._nzeros) self._dj2zeros= self._j2zeros-nu.roll(self._j2zeros,1) self._dj2zeros[0]= self._j2zeros[0] if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) #Load Kepler potential for large R self._kp= KeplerPotential(normalize=4.*nu.pi/self._alpha**2./self._beta) def _evaluate(self,R,z,phi=0.,t=0.,dR=0,dphi=0): """ NAME: _evaluate PURPOSE: evaluate the potential at (R,z) INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: potential at (R,z) HISTORY: 2010-04-16 - Written - Bovy (NYU) 2012-12-26 - New method using Gaussian quadrature between zeros - Bovy (IAS) DOCTEST: >>> doubleExpPot= DoubleExponentialDiskPotential() >>> r= doubleExpPot(1.,0) #doctest: +ELLIPSIS ... >>> assert( r+1.89595350484)**2.< 10.**-6. """ if True: if isinstance(R,float): floatIn= True R= nu.array([R]) z= nu.array([z]) else: floatIn= False out= nu.empty(len(R)) indx= (R <= 6.) out[True-indx]= self._kp(R[True-indx],z[True-indx]) R4max= nu.copy(R) R4max[(R < 1.)]= 1. kmax= self._kmaxFac*self._beta for jj in range(len(R)): if not indx[jj]: continue maxj0zeroIndx= nu.argmin((self._j0zeros-kmax*R4max[jj])**2.) #close enough ks= nu.array([0.5*(self._glx+1.)*self._dj0zeros[ii+1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx)]).flatten() weights= nu.array([self._glw*self._dj0zeros[ii+1] for ii in range(maxj0zeroIndx)]).flatten() evalInt= special.jn(0,ks*R[jj])*(self._alpha**2.+ks**2.)**-1.5*(self._beta*nu.exp(-ks*nu.fabs(z[jj]))-ks*nu.exp(-self._beta*nu.fabs(z[jj])))/(self._beta**2.-ks**2.) out[jj]= -2.*nu.pi*self._alpha*nu.sum(weights*evalInt) if floatIn: return out[0] else: return out def _Rforce(self,R,z,phi=0.,t=0.): """ NAME: Rforce PURPOSE: evaluate radial force K_R (R,z) INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: K_R (R,z) HISTORY: 2010-04-16 - Written - Bovy (NYU) DOCTEST: """ if True: if isinstance(R,nu.ndarray): if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z out= nu.array([self._Rforce(rr,zz) for rr,zz in zip(R,z)]) return out if (R > 16.*self._hr or R > 6.) and hasattr(self,'_kp'): return self._kp.Rforce(R,z) if R < 1.: R4max= 1. else: R4max= R kmax= self._kmaxFac*self._beta kmax= 2.*self._kmaxFac*self._beta maxj1zeroIndx= nu.argmin((self._j1zeros-kmax*R4max)**2.) #close enough ks= nu.array([0.5*(self._glx+1.)*self._dj1zeros[ii+1] + self._j1zeros[ii] for ii in range(maxj1zeroIndx)]).flatten() weights= nu.array([self._glw*self._dj1zeros[ii+1] for ii in range(maxj1zeroIndx)]).flatten() evalInt= ks*special.jn(1,ks*R)*(self._alpha**2.+ks**2.)**-1.5*(self._beta*nu.exp(-ks*nu.fabs(z))-ks*nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks**2.) return -2.*nu.pi*self._alpha*nu.sum(weights*evalInt) def _zforce(self,R,z,phi=0.,t=0.): """ NAME: zforce PURPOSE: evaluate vertical force K_z (R,z) INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: K_z (R,z) HISTORY: 2010-04-16 - Written - Bovy (NYU) DOCTEST: """ if True: if isinstance(R,nu.ndarray): if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z out= nu.array([self._zforce(rr,zz) for rr,zz in zip(R,z)]) return out if R > 16.*self._hr or R > 6.: return self._kp.zforce(R,z) if R < 1.: R4max= 1. else: R4max= R kmax= self._kmaxFac*self._beta maxj0zeroIndx= nu.argmin((self._j0zeros-kmax*R4max)**2.) #close enough ks= nu.array([0.5*(self._glx+1.)*self._dj0zeros[ii+1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx)]).flatten() weights= nu.array([self._glw*self._dj0zeros[ii+1] for ii in range(maxj0zeroIndx)]).flatten() evalInt= ks*special.jn(0,ks*R)*(self._alpha**2.+ks**2.)**-1.5*(nu.exp(-ks*nu.fabs(z))-nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks**2.) if z > 0.: return -2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt) else: return 2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt) def _R2deriv(self,R,z,phi=0.,t=0.): """ NAME: R2deriv PURPOSE: evaluate R2 derivative INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: -d K_R (R,z) d R HISTORY: 2012-12-27 - Written - Bovy (IAS) """ if True: if isinstance(R,nu.ndarray): if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z out= nu.array([self._R2deriv(rr,zz) for rr,zz in zip(R,z)]) return out if R > 16.*self._hr or R > 6.: return self._kp.R2deriv(R,z) if R < 1.: R4max= 1. else: R4max= R kmax= 2.*self._kmaxFac*self._beta maxj0zeroIndx= nu.argmin((self._j0zeros-kmax*R4max)**2.) #close enough maxj2zeroIndx= nu.argmin((self._j2zeros-kmax*R4max)**2.) #close enough ks0= nu.array([0.5*(self._glx+1.)*self._dj0zeros[ii+1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx)]).flatten() weights0= nu.array([self._glw*self._dj0zeros[ii+1] for ii in range(maxj0zeroIndx)]).flatten() ks2= nu.array([0.5*(self._glx+1.)*self._dj2zeros[ii+1] + self._j2zeros[ii] for ii in range(maxj2zeroIndx)]).flatten() weights2= nu.array([self._glw*self._dj2zeros[ii+1] for ii in range(maxj2zeroIndx)]).flatten() evalInt0= ks0**2.*special.jn(0,ks0*R)*(self._alpha**2.+ks0**2.)**-1.5*(self._beta*nu.exp(-ks0*nu.fabs(z))-ks0*nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks0**2.) evalInt2= ks2**2.*special.jn(2,ks2*R)*(self._alpha**2.+ks2**2.)**-1.5*(self._beta*nu.exp(-ks2*nu.fabs(z))-ks2*nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks2**2.) return nu.pi*self._alpha*(nu.sum(weights0*evalInt0) -nu.sum(weights2*evalInt2)) def _z2deriv(self,R,z,phi=0.,t=0.): """ NAME: z2deriv PURPOSE: evaluate z2 derivative INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: -d K_Z (R,z) d Z HISTORY: 2012-12-26 - Written - Bovy (IAS) """ if True: if isinstance(R,nu.ndarray): if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z out= nu.array([self._z2deriv(rr,zz) for rr,zz in zip(R,z)]) return out if R > 16.*self._hr or R > 6.: return self._kp.z2deriv(R,z) if R < 1.: R4max= 1. else: R4max= R kmax= self._kmaxFac*self._beta maxj0zeroIndx= nu.argmin((self._j0zeros-kmax*R4max)**2.) #close enough ks= nu.array([0.5*(self._glx+1.)*self._dj0zeros[ii+1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx)]).flatten() weights= nu.array([self._glw*self._dj0zeros[ii+1] for ii in range(maxj0zeroIndx)]).flatten() evalInt= ks*special.jn(0,ks*R)*(self._alpha**2.+ks**2.)**-1.5*(ks*nu.exp(-ks*nu.fabs(z))-self._beta*nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks**2.) return -2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt) def _Rzderiv(self,R,z,phi=0.,t=0.): """ NAME: Rzderiv PURPOSE: evaluate the mixed R,z derivative INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: d2phi/dR/dz HISTORY: 2013-08-28 - Written - Bovy (IAS) """ if True: if isinstance(R,nu.ndarray): if not isinstance(z,nu.ndarray): z= nu.ones_like(R)*z out= nu.array([self._Rzderiv(rr,zz) for rr,zz in zip(R,z)]) return out if R > 6.: return self._kp.Rzderiv(R,z) if R < 1.: R4max= 1. else: R4max= R kmax= 2.*self._kmaxFac*self._beta maxj1zeroIndx= nu.argmin((self._j1zeros-kmax*R4max)**2.) #close enough ks= nu.array([0.5*(self._glx+1.)*self._dj1zeros[ii+1] + self._j1zeros[ii] for ii in range(maxj1zeroIndx)]).flatten() weights= nu.array([self._glw*self._dj1zeros[ii+1] for ii in range(maxj1zeroIndx)]).flatten() evalInt= ks**2.*special.jn(1,ks*R)*(self._alpha**2.+ks**2.)**-1.5*(nu.exp(-ks*nu.fabs(z))-nu.exp(-self._beta*nu.fabs(z)))/(self._beta**2.-ks**2.) if z >= 0.: return -2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt) else: return 2.*nu.pi*self._alpha*self._beta*nu.sum(weights*evalInt) def _dens(self,R,z,phi=0.,t=0.): """ NAME: dens PURPOSE: evaluate the density INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: rho (R,z) HISTORY: 2010-08-08 - Written - Bovy (NYU) """ return nu.exp(-self._alpha*R-self._beta*nu.fabs(z))
class DoubleExponentialDiskPotential(Potential): """Class that implements the double exponential disk potential .. math:: \\rho(R,z) = \\mathrm{amp}\\,\\exp\\left(-R/h_R-|z|/h_z\\right) """ def __init__(self, amp=1., hr=1. / 3., hz=1. / 16., maxiter=_MAXITER, tol=0.001, normalize=False, ro=None, vo=None, new=True, kmaxFac=2., glorder=10): """ NAME: __init__ PURPOSE: initialize a double-exponential disk potential INPUT: amp - amplitude to be applied to the potential (default: 1); can be a Quantity with units of mass density or Gxmass density hr - disk scale-length (can be Quantity) hz - scale-height (can be Quantity) tol - relative accuracy of potential-evaluations maxiter - scipy.integrate keyword normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. ro=, vo= distance and velocity scales for translation into internal units (default from configuration file) OUTPUT: DoubleExponentialDiskPotential object HISTORY: 2010-04-16 - Written - Bovy (NYU) 2013-01-01 - Re-implemented using faster integration techniques - Bovy (IAS) """ Potential.__init__(self, amp=amp, ro=ro, vo=vo, amp_units='density') if _APY_LOADED and isinstance(hr, units.Quantity): hr = hr.to(units.kpc).value / self._ro if _APY_LOADED and isinstance(hz, units.Quantity): hz = hz.to(units.kpc).value / self._ro self.hasC = True self._kmaxFac = kmaxFac self._glorder = glorder self._hr = hr self._scale = self._hr self._hz = hz self._alpha = 1. / self._hr self._beta = 1. / self._hz self._gamma = self._alpha / self._beta self._maxiter = maxiter self._tol = tol self._zforceNotSetUp = True #We have not calculated a typical Kz yet #Setup j0 zeros etc. self._glx, self._glw = nu.polynomial.legendre.leggauss(self._glorder) self._nzeros = 100 #j0 for potential and z self._j0zeros = nu.zeros(self._nzeros + 1) self._j0zeros[1:self._nzeros + 1] = special.jn_zeros(0, self._nzeros) self._dj0zeros = self._j0zeros - nu.roll(self._j0zeros, 1) self._dj0zeros[0] = self._j0zeros[0] #j1 for R self._j1zeros = nu.zeros(self._nzeros + 1) self._j1zeros[1:self._nzeros + 1] = special.jn_zeros(1, self._nzeros) self._dj1zeros = self._j1zeros - nu.roll(self._j1zeros, 1) self._dj1zeros[0] = self._j1zeros[0] #j2 for R2deriv self._j2zeros = nu.zeros(self._nzeros + 1) self._j2zeros[1:self._nzeros + 1] = special.jn_zeros(2, self._nzeros) self._dj2zeros = self._j2zeros - nu.roll(self._j2zeros, 1) self._dj2zeros[0] = self._j2zeros[0] if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) #Load Kepler potential for large R self._kp = KeplerPotential(normalize=4. * nu.pi / self._alpha**2. / self._beta) def _evaluate(self, R, z, phi=0., t=0., dR=0, dphi=0): """ NAME: _evaluate PURPOSE: evaluate the potential at (R,z) INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: potential at (R,z) HISTORY: 2010-04-16 - Written - Bovy (NYU) 2012-12-26 - New method using Gaussian quadrature between zeros - Bovy (IAS) DOCTEST: >>> doubleExpPot= DoubleExponentialDiskPotential() >>> r= doubleExpPot(1.,0) #doctest: +ELLIPSIS ... >>> assert( r+1.89595350484)**2.< 10.**-6. """ if True: if isinstance(R, float): floatIn = True R = nu.array([R]) z = nu.array([z]) else: floatIn = False out = nu.empty(len(R)) indx = (R <= 6.) out[True ^ indx] = self._kp(R[True ^ indx], z[True ^ indx]) R4max = nu.copy(R) R4max[(R < 1.)] = 1. kmax = self._kmaxFac * self._beta for jj in range(len(R)): if not indx[jj]: continue maxj0zeroIndx = nu.argmin( (self._j0zeros - kmax * R4max[jj])**2.) #close enough ks = nu.array([ 0.5 * (self._glx + 1.) * self._dj0zeros[ii + 1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx) ]).flatten() weights = nu.array([ self._glw * self._dj0zeros[ii + 1] for ii in range(maxj0zeroIndx) ]).flatten() evalInt = special.jn( 0, ks * R[jj]) * (self._alpha**2. + ks**2.)**-1.5 * ( self._beta * nu.exp(-ks * nu.fabs(z[jj])) - ks * nu.exp(-self._beta * nu.fabs(z[jj]))) / ( self._beta**2. - ks**2.) out[jj] = -2. * nu.pi * self._alpha * nu.sum(weights * evalInt) if floatIn: return out[0] else: return out def _Rforce(self, R, z, phi=0., t=0.): """ NAME: Rforce PURPOSE: evaluate radial force K_R (R,z) INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: K_R (R,z) HISTORY: 2010-04-16 - Written - Bovy (NYU) DOCTEST: """ if True: if isinstance(R, nu.ndarray): if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z out = nu.array([self._Rforce(rr, zz) for rr, zz in zip(R, z)]) return out if (R > 16. * self._hr or R > 6.) and hasattr(self, '_kp'): return self._kp.Rforce(R, z) if R < 1.: R4max = 1. else: R4max = R kmax = self._kmaxFac * self._beta kmax = 2. * self._kmaxFac * self._beta maxj1zeroIndx = nu.argmin( (self._j1zeros - kmax * R4max)**2.) #close enough ks = nu.array([ 0.5 * (self._glx + 1.) * self._dj1zeros[ii + 1] + self._j1zeros[ii] for ii in range(maxj1zeroIndx) ]).flatten() weights = nu.array([ self._glw * self._dj1zeros[ii + 1] for ii in range(maxj1zeroIndx) ]).flatten() evalInt = ks * special.jn( 1, ks * R) * (self._alpha**2. + ks**2.)**-1.5 * ( self._beta * nu.exp(-ks * nu.fabs(z)) - ks * nu.exp(-self._beta * nu.fabs(z))) / (self._beta**2. - ks**2.) return -2. * nu.pi * self._alpha * nu.sum(weights * evalInt) def _zforce(self, R, z, phi=0., t=0.): """ NAME: zforce PURPOSE: evaluate vertical force K_z (R,z) INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: K_z (R,z) HISTORY: 2010-04-16 - Written - Bovy (NYU) DOCTEST: """ if True: if isinstance(R, nu.ndarray): if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z out = nu.array([self._zforce(rr, zz) for rr, zz in zip(R, z)]) return out if R > 16. * self._hr or R > 6.: return self._kp.zforce(R, z) if R < 1.: R4max = 1. else: R4max = R kmax = self._kmaxFac * self._beta maxj0zeroIndx = nu.argmin( (self._j0zeros - kmax * R4max)**2.) #close enough ks = nu.array([ 0.5 * (self._glx + 1.) * self._dj0zeros[ii + 1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx) ]).flatten() weights = nu.array([ self._glw * self._dj0zeros[ii + 1] for ii in range(maxj0zeroIndx) ]).flatten() evalInt = ks * special.jn( 0, ks * R) * (self._alpha**2. + ks**2.)**-1.5 * (nu.exp( -ks * nu.fabs(z)) - nu.exp(-self._beta * nu.fabs(z))) / ( self._beta**2. - ks**2.) if z > 0.: return -2. * nu.pi * self._alpha * self._beta * nu.sum( weights * evalInt) else: return 2. * nu.pi * self._alpha * self._beta * nu.sum( weights * evalInt) def _R2deriv(self, R, z, phi=0., t=0.): """ NAME: R2deriv PURPOSE: evaluate R2 derivative INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: -d K_R (R,z) d R HISTORY: 2012-12-27 - Written - Bovy (IAS) """ if True: if isinstance(R, nu.ndarray): if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z out = nu.array([self._R2deriv(rr, zz) for rr, zz in zip(R, z)]) return out if R > 16. * self._hr or R > 6.: return self._kp.R2deriv(R, z) if R < 1.: R4max = 1. else: R4max = R kmax = 2. * self._kmaxFac * self._beta maxj0zeroIndx = nu.argmin( (self._j0zeros - kmax * R4max)**2.) #close enough maxj2zeroIndx = nu.argmin( (self._j2zeros - kmax * R4max)**2.) #close enough ks0 = nu.array([ 0.5 * (self._glx + 1.) * self._dj0zeros[ii + 1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx) ]).flatten() weights0 = nu.array([ self._glw * self._dj0zeros[ii + 1] for ii in range(maxj0zeroIndx) ]).flatten() ks2 = nu.array([ 0.5 * (self._glx + 1.) * self._dj2zeros[ii + 1] + self._j2zeros[ii] for ii in range(maxj2zeroIndx) ]).flatten() weights2 = nu.array([ self._glw * self._dj2zeros[ii + 1] for ii in range(maxj2zeroIndx) ]).flatten() evalInt0 = ks0**2. * special.jn( 0, ks0 * R) * (self._alpha**2. + ks0**2.)**-1.5 * ( self._beta * nu.exp(-ks0 * nu.fabs(z)) - ks0 * nu.exp(-self._beta * nu.fabs(z))) / (self._beta**2. - ks0**2.) evalInt2 = ks2**2. * special.jn( 2, ks2 * R) * (self._alpha**2. + ks2**2.)**-1.5 * ( self._beta * nu.exp(-ks2 * nu.fabs(z)) - ks2 * nu.exp(-self._beta * nu.fabs(z))) / (self._beta**2. - ks2**2.) return nu.pi * self._alpha * (nu.sum(weights0 * evalInt0) - nu.sum(weights2 * evalInt2)) def _z2deriv(self, R, z, phi=0., t=0.): """ NAME: z2deriv PURPOSE: evaluate z2 derivative INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: -d K_Z (R,z) d Z HISTORY: 2012-12-26 - Written - Bovy (IAS) """ if True: if isinstance(R, nu.ndarray): if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z out = nu.array([self._z2deriv(rr, zz) for rr, zz in zip(R, z)]) return out if R > 16. * self._hr or R > 6.: return self._kp.z2deriv(R, z) if R < 1.: R4max = 1. else: R4max = R kmax = self._kmaxFac * self._beta maxj0zeroIndx = nu.argmin( (self._j0zeros - kmax * R4max)**2.) #close enough ks = nu.array([ 0.5 * (self._glx + 1.) * self._dj0zeros[ii + 1] + self._j0zeros[ii] for ii in range(maxj0zeroIndx) ]).flatten() weights = nu.array([ self._glw * self._dj0zeros[ii + 1] for ii in range(maxj0zeroIndx) ]).flatten() evalInt = ks * special.jn( 0, ks * R) * (self._alpha**2. + ks**2.)**-1.5 * ( ks * nu.exp(-ks * nu.fabs(z)) - self._beta * nu.exp(-self._beta * nu.fabs(z))) / ( self._beta**2. - ks**2.) return -2. * nu.pi * self._alpha * self._beta * nu.sum( weights * evalInt) def _Rzderiv(self, R, z, phi=0., t=0.): """ NAME: Rzderiv PURPOSE: evaluate the mixed R,z derivative INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: d2phi/dR/dz HISTORY: 2013-08-28 - Written - Bovy (IAS) """ if True: if isinstance(R, nu.ndarray): if not isinstance(z, nu.ndarray): z = nu.ones_like(R) * z out = nu.array([self._Rzderiv(rr, zz) for rr, zz in zip(R, z)]) return out if R > 6.: return self._kp.Rzderiv(R, z) if R < 1.: R4max = 1. else: R4max = R kmax = 2. * self._kmaxFac * self._beta maxj1zeroIndx = nu.argmin( (self._j1zeros - kmax * R4max)**2.) #close enough ks = nu.array([ 0.5 * (self._glx + 1.) * self._dj1zeros[ii + 1] + self._j1zeros[ii] for ii in range(maxj1zeroIndx) ]).flatten() weights = nu.array([ self._glw * self._dj1zeros[ii + 1] for ii in range(maxj1zeroIndx) ]).flatten() evalInt = ks**2. * special.jn( 1, ks * R) * (self._alpha**2. + ks**2.)**-1.5 * (nu.exp( -ks * nu.fabs(z)) - nu.exp(-self._beta * nu.fabs(z))) / ( self._beta**2. - ks**2.) if z >= 0.: return -2. * nu.pi * self._alpha * self._beta * nu.sum( weights * evalInt) else: return 2. * nu.pi * self._alpha * self._beta * nu.sum( weights * evalInt) def _dens(self, R, z, phi=0., t=0.): """ NAME: dens PURPOSE: evaluate the density INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: rho (R,z) HISTORY: 2010-08-08 - Written - Bovy (NYU) """ return nu.exp(-self._alpha * R - self._beta * nu.fabs(z))