예제 #1
0
def test_logsumexp():
    from galpy.util import logsumexp
    sumthis= numpy.array([[0.,1.]])
    sum= numpy.log(numpy.exp(0.)+numpy.exp(1.))
    assert numpy.all(numpy.fabs(logsumexp(sumthis,axis=0)-sumthis) < 10.**-10.), 'galpy.util.logsumexp did not work as expected'
    assert numpy.fabs(logsumexp(sumthis,axis=1)-sum) < 10.**-10., 'galpy.util.logsumexp did not work as expected'
    assert numpy.fabs(logsumexp(sumthis,axis=None)-sum) < 10.**-10., 'galpy.util.logsumexp did not work as expected'
    return None
예제 #2
0
def test_logsumexp():
    from galpy.util import logsumexp
    sumthis = numpy.array([[0., 1.]])
    sum = numpy.log(numpy.exp(0.) + numpy.exp(1.))
    assert numpy.all(
        numpy.fabs(logsumexp(sumthis, axis=0) - sumthis) < 10.**-10.
    ), 'galpy.util.logsumexp did not work as expected'
    assert numpy.fabs(
        logsumexp(sumthis, axis=1) -
        sum) < 10.**-10., 'galpy.util.logsumexp did not work as expected'
    assert numpy.fabs(
        logsumexp(sumthis, axis=None) -
        sum) < 10.**-10., 'galpy.util.logsumexp did not work as expected'
    return None
예제 #3
0
    def __call__(self, x, h=None, log=False, scale=True, sx2=None):
        """
        NAME:
           __call__
        PURPOSE:
            return the density
        INPUT:
           x - evaluate at this x [nx,dim]
           log= (False) if True, return the log
           h= (None) if set, use this bandwidth
           scale= (True), if False, don't rescale first
           sx2= uncertainty variance of x
        OUTPUT:
           density (or log)
        HISTORY:
           2012-11-12 - Written - Bovy (IAS)
        """
        if h is None:
            thish = self._h
        else:
            thish = h
        x = self._prepare_x(x, scale)
        divh = numpy.tile(thish * self._lambda.T, (x.shape[0], 1, 1))
        if not sx2 is None:
            divh = numpy.sqrt(divh**2. +
                              numpy.tile(sx2.T, (self._ndata, 1, 1)).T)
        thiskernel = self._kernel(numpy.tile(x.T,
                                             (self._ndata, 1, 1)).T / divh,
                                  numpy.tile(self._data.T,
                                             (x.shape[0], 1, 1)) / divh,
                                  log=log)
        if log:
            return logsumexp(thiskernel+numpy.tile(numpy.log(self._w),(x.shape[0],1))\
#            return -self._dim*numpy.log(thish)\
                                 -numpy.sum(numpy.log(divh),axis=1),axis=1) #latter assumes that lambda are spherical


#                               -self._dim*numpy.log(self._lambda[:,0]),axis=1) #latter assumes that lambda are spherical
        else:
            return 1./thish**self._dim\
                *numpy.sum(numpy.tile(self._w,(x.shape[0],1))\
                               *thiskernel/self._lambda[:,0]**self._dim,axis=1)
예제 #4
0
파일: dens_kde.py 프로젝트: jobovy/apogee
    def __call__(self,x,h=None,log=False,scale=True,sx2=None):
        """
        NAME:
           __call__
        PURPOSE:
            return the density
        INPUT:
           x - evaluate at this x [nx,dim]
           log= (False) if True, return the log
           h= (None) if set, use this bandwidth
           scale= (True), if False, don't rescale first
           sx2= uncertainty variance of x
        OUTPUT:
           density (or log)
        HISTORY:
           2012-11-12 - Written - Bovy (IAS)
        """
        if h is None:
            thish= self._h
        else:
            thish= h
        x= self._prepare_x(x,scale)
        divh= numpy.tile(thish*self._lambda.T,(x.shape[0],1,1))
        if not sx2 is None:
            divh= numpy.sqrt(divh**2.
                             +numpy.tile(sx2.T,(self._ndata,1,1)).T)
        thiskernel= self._kernel(numpy.tile(x.T,(self._ndata,1,1)).T/divh,
                                 numpy.tile(self._data.T,(x.shape[0],1,1))/divh,
                                 log=log)
        if log:
            return logsumexp(thiskernel+numpy.tile(numpy.log(self._w),(x.shape[0],1))\
#            return -self._dim*numpy.log(thish)\
                                 -numpy.sum(numpy.log(divh),axis=1),axis=1) #latter assumes that lambda are spherical
#                               -self._dim*numpy.log(self._lambda[:,0]),axis=1) #latter assumes that lambda are spherical
        else:
            return 1./thish**self._dim\
                *numpy.sum(numpy.tile(self._w,(x.shape[0],1))\
                               *thiskernel/self._lambda[:,0]**self._dim,axis=1)