def test_gam_ranked_mushrooms_runtime(self): local_attribution_path = 'data/mushrooms.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="ranked medoids") g.generate() print("Ranked Medoids Runtime: ", g.duration)
def test_gam_kernel_mushrooms_runtime(self): local_attribution_path = '../data/mice_protein.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="kernel medoids", dataset='mice_protein') g.generate() print("Kernel Runtime: ", g.duration)
def test_gam_bandit_mushrooms_runtime(self): local_attribution_path = 'data/mushrooms.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="bandit pam", dataset='mushrooms') g.generate() print("BanditPAM Runtime: ", g.duration)
def test_gam_bandit_mice_runtime_700_samples(self): local_attribution_path = '../data/mice_protein.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="bandit pam", num_samp=700, dataset='mice_protein') g.generate() print("BanditPAM 700 Runtime: ", g.duration)
def test_gam_bandit_crime_runtime_1000_samples(self): local_attribution_path = '../data/crime.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="bandit pam", num_samp=1000, dataset='crime') g.generate() print("BanditPAM 1000 Runtime: ", g.duration)
def test_gam_bandit_wine_runtime(self): print( "-- test_gam_bandit_wine_runtime -------------------------------------------------------" ) gam = GAM() local_attribution_path = 'data/wine.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="bandit pam") g.generate() print("BanditPAM Runtime: ", g.duration, "\n")
def test_gam_parallel_wine_bestk(self): local_attribution_path = '../data/wine_clean.csv' bestClusterNumber = 0 bestScore = -2 for k in range(2,5): g = GAM(attributions_path=local_attribution_path, n_clusters=k, cluster_method="bandit pam", dataset='wine') g.generate() if g.avg_silhouette_score > bestScore: bestScore = g.avg_silhouette_score bestClusterNumber = k print("Best Number of Clusters: ", bestClusterNumber) print("Best Silhouette Score:, ", bestScore)
def test_gam_parallel_mice_bestk(self): local_attribution_path = '../data/mice_protein.csv' bestClusterNumber = 0 bestScore = -2 for k in range(2, 5): g = GAM(attributions_path=local_attribution_path, n_clusters=k, cluster_method="parallel medoids", dataset='mice_protein') g.generate() if g.avg_silhouette_score > bestScore: bestScore = g.avg_silhouette_score bestClusterNumber = k print("Best Number of Clusters: ", bestClusterNumber) print("Best Silhouette Score:, ", bestScore)
def test_gam_kmedoids_wine_runtime(self): local_attribution_path = '../data/wine_clean.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method=None) g.generate() print("Original Medoids Algorithm Runtime: ", g.duration)
def test_gam_bandit_wine_runtime(self): local_attribution_path = '../data/wine_clean.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="bandit pam", dataset='wine') g.generate() print("BanditPAM Runtime: ", g.duration)
def test_gam_parallel_wine_runtime(self): local_attribution_path = '../data/wine_clean.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="parallel medoids") g.generate() print("Parallel Medoids Runtime: ", g.duration)
def test_gam_bandit_mushrooms_runtime(self): gam = GAM() local_attribution_path = 'data/mushroom-attributions-200-samples.csv' g = GAM(attributions_path=local_attribution_path, n_clusters=3, cluster_method="bandit pam") g.generate() print("BanditPAM Runtime: ", g.duration)