예제 #1
0
파일: dp_solvers.py 프로젝트: yishutu/GAME
    def run(self, csccp, run_options):

        if run_options["verbose"]:
            print "Starting Dynamic Programming"
        if csccp.trivial():
            raise dat.TrivialCSCCP("This CSCCP problem is trivial.")

        # 1- Variable init   * * * * * * * * * * * * * * * * * * * * * * * *
        l = max([len(x) for x in csccp.W])
        n = csccp.n
        R = csccp.R
        D = run_options["dec"]
        wt_max = int(csccp.wmax * 10**D + n * 0.5 / 10**D)
        wt_min = int(csccp.wmin * 10**D - n * 0.5 / 10**D)
        W = array([([int(w * 10**D) for w in wside] + [0] * l)[:l]
                   for wside in csccp.W],
                  dtype=int32)
        P = array([(pside + [0] * l)[:l] for pside in csccp.P], dtype=float32)
        K = array(csccp.K, dtype=int32)
        C = zeros((wt_max + 1, R),
                  self.float_t)  # [0 .. n-1] x [0 .. wt_max] x [0 .. R-1]
        L = zeros((n, wt_max + 1, R, 2), self.int_t)

        try:
            # 2- Core computations   * * * * * * * * * * * * * * * * * * * *
            SIGINT, TIMEOUT = self.kernelOpt.run(n, R, wt_max, K, W, P, L, C,
                                                 run_options)
            if SIGINT:
                raise KeyboardInterrupt
            if TIMEOUT > 0:
                raise tools.Timer.TimeoutException(TIMEOUT)
            # 3- Result filtering starting * * * * * * * * * * * * * * * * *
            valid_candidates = []
            len_filtered_results = 0
            for w in range(wt_min, wt_max + 1):
                for r in range(0, R):
                    probability = C[w][r]
                    if probability > 0:
                        len_filtered_results += 1
                        real_weight, comp = self.compute_real_weight(
                            csccp, w, r, W, L)
                        if real_weight >= csccp.wmin and real_weight <= csccp.wmax:
                            valid_candidates.append(
                                (probability *
                                 csccp.scaffold_probability_rel2config,
                                 real_weight +
                                 csccp.scaffold_weight_rel2config, comp))

            valid_candidates = sorted(valid_candidates,
                                      key=lambda x: x[0],
                                      reverse=True)
            valid_candidates = valid_candidates[0:R]
            return dat.CSCCP.Result(
                array(valid_candidates,
                      dtype=dtype([('p', float), ('w', float),
                                   ('comp', list)])))
        except KeyboardInterrupt:
            print "*  WARNING: the program was interrupted by user (CTRL+C). The program will now terminate *"
            exit()
예제 #2
0
    def run(self, csccp, run_options):

        if csccp.trivial():
            raise dat.TrivialCSCCP("This CSCCP problem is trivial")
        if run_options['verbose']:
            print "Starting Iterative Dynamic Programming C-optimized L-compressed"

        # 1- Variable init * * * * * * * * * * * * * * * * * * * * * * * * * * *
        l = max([len(x) for x in csccp.W])
        n = csccp.n
        multiplier = 10
        R = csccp.R
        RR = multiplier * R
        wt_max = int(csccp.wmax + 0.5 * n)
        wt_min = int(csccp.wmin - 0.5 * n)
        K = array(csccp.K, dtype=int32)
        W = array([([int(w) for w in wside] + [0] * l)[:l]
                   for wside in csccp.W],
                  dtype=int32)
        P = array([(pside + [0] * l)[:l] for pside in csccp.P], dtype=float32)

        try:
            # 2- Core computations loop * * * * * * * * * * * * * * * * * * * * *
            count = 0
            reason = "none"
            valid_candidates = []

            K_encoder = dp_solvers.Encoder1()
            R_encoder = dp_solvers.Encoder1()
            K_encoder.setup(K, 32)

            while True:
                count += 1
                # 2.1- Variable init for the loop
                C = zeros((wt_max + 1, RR),
                          float32)  # [0 .. n-1] x [0 .. wt_max] x [0 .. R-1]
                L = zeros((wt_max + 1, RR, 2), uint32)
                R_encoder.setup([RR - 1 for x in range(0, n)], 32)

                # 2.2- Core computations
                SIGINT, TIMEOUT = self.kernelOptCompressed.run(
                    n, RR, wt_max, K, W, P, L, C, K_encoder, R_encoder,
                    run_options)
                if SIGINT:
                    raise KeyboardInterrupt
                if TIMEOUT > 0:
                    raise tools.Timer.TimeoutException(TIMEOUT)
                # 2.3- Result filtering
                len_filtered_results = 0
                for w in range(wt_min, wt_max + 1):
                    for r in range(0, RR):
                        probability = C[w][r]
                        if probability:
                            len_filtered_results += 1
                            real_weight, comp = self.compute_real_weight(
                                csccp, w, r, W, L, K_encoder, R_encoder)
                            if real_weight >= csccp.wmin and real_weight <= csccp.wmax:
                                valid_candidates.append(
                                    (probability *
                                     csccp.scaffold_probability_rel2config,
                                     real_weight +
                                     csccp.scaffold_weight_rel2config, comp))

                # 2.4- Taking decision to iterate or not
                if len_filtered_results and len_filtered_results < RR:
                    reason = "len(filtered_results)=%d < RR" % (
                        len_filtered_results)
                    break
                if len(valid_candidates) >= R:
                    reason = "found R valid candidates"
                    break
                if RR >= csccp.number_of_compounds:
                    break
                RR = min(RR * multiplier, csccp.number_of_compounds)
            # -- END WHILE

            if run_options["verbose"]:
                print "Finished with %d iterations: RR=%d<=%d. Reason: %s" % (
                    count, RR, csccp.number_of_compounds, reason)
            valid_candidates = sorted(valid_candidates,
                                      key=lambda x: x[0],
                                      reverse=True)
            valid_candidates = valid_candidates[0:R]
            return dat.CSCCP.Result(
                array(valid_candidates,
                      dtype=dtype([('p', float), ('w', float),
                                   ('comp', list)])))

        except KeyboardInterrupt:
            print "*  WARNING: the program was interrupted by user (CTRL+C). The program will now terminate *"
            exit()
예제 #3
0
파일: bf_solvers.py 프로젝트: yishutu/GAME
    def run(self, csccp, options={}):
        '''
		Args:
			CSCCP csccp    : the input problem
			      options  : {verbose,debug,maxruntime} 
		Returns:
			CSCCP.Result: the results
		Raises:
			TimeoutException
		'''

        if csccp.trivial():
            raise dat.TrivialCSCCP("This CSCCP problem is trivial")

        if options["verbose"]:
            print "Starting python CPU Brute force solver..."

        res = []
        minimum = 1
        minIdx = 0
        count = 0
        timer = Timer()
        timer.start()

        # 2- Solve CSCCP and handle interruption and timeout exceptions
        try:
            for comp in csccp:
                #stop the program if it takes too long to run
                if timer.elapsedTime() > options["maxruntime"]:
                    raise Timer.TimeoutException(timer.elapsedTime())

                weights = [0] + [
                    csccp.W[s][comp[s]] for s in range(0, csccp.n)
                ]
                weight = sum(weights)
                if options["debug"]:
                    print "Debug:", weight + csccp.scaffold_weight_rel2config, "(weight computed)"

                # we only keep coumpounds that have the right weight
                if weight >= csccp.wmin and weight <= csccp.wmax:
                    # then we compute the probability
                    probabilities = [1] + [
                        csccp.P[s][comp[s]] for s in range(0, csccp.n)
                    ]
                    probabilities = array(probabilities, dtype=self.float_t)
                    probability = multiply.reduce(probabilities)
                    #probability=reduce(mul,probabilities)

                    if not len(res):
                        minimum = probability
                        minIdx = 0
                        res.append([probability, weight, comp])

                    elif len(res) < csccp.R:
                        if probability < minimum:
                            minIdx = len(res)
                            minimum = probability
                        #if probability>=minimum: we just add it to the list without changing
                        res.append([probability, weight, comp])
                    else:
                        #if probability<minimum: we do nothing
                        if probability >= minimum:
                            res[minIdx] = [probability, weight, comp]
                            minIdx = argmin([x[0] for x in res])
                            minimum = res[minIdx][0]
        except KeyboardInterrupt:
            print "* WARNING: the program was interrupted by user (CTRL+C). Results might be inaccurate! *"

        # 3- Processing results
        res = sorted(res, key=lambda x: x[0], reverse=True)
        res = array([(p * csccp.scaffold_probability_rel2config,
                      w + csccp.scaffold_weight_rel2config, comp)
                     for p, w, comp in res],
                    dtype=dtype([('p', float), ('w', float), ('comp', list)]))
        if options["verbose"]:
            print "Done."

        return dat.CSCCP.Result(res)