예제 #1
0
파일: GUI.py 프로젝트: lightning-skyz/test1
 def run(self):
     if self.ui.DCTButton.isChecked():
         DCT.DCT1(self.path())
     if self.ui.DFTButton.isChecked():
         DFT.DFT1(self.path())
     if self.ui.zhifangButton.isChecked():
         histogram_equalization.his_eq(self.path())
     if self.ui.noseButton.isChecked():
         nose.addnoise(self.path())
     if self.ui.grayButton.isChecked():
         gray.gray1(self.path())
     if self.ui.buguize.isChecked():
         buguize.buguize(self.path())
     if self.ui.duishu.isChecked():
         buguize.buguize(self.path())
     if self.ui.gamma.isChecked():
         gamma.gamma(self.path())
     if self.ui.junzhi.isChecked():
         junzhi.junzhi(self.path())
     if self.ui.face.isChecked():
         test_face3.face(self.path())
     if self.ui.fenge.isChecked():
         test_fenge.fenge(self.path())
     if self.ui.kuang.isChecked():
         test_kuang.kuang(self.path())
예제 #2
0
def u_prime(ux, uy, uz, v):
    c = 299792458  #Define speed of light in m/s.
    ux *= c
    uy *= c
    uz *= c
    v *= c
    ux_prime = (ux - v) / (1 - ux * v / c**2)
    uy_prime = uy / (gamma(v) * (1 - ux * v / c**2))
    uz_prime = uz / (gamma(v) * (1 - ux * v / c**2))
    return ux_prime / c, uy_prime / c, uz_prime / c
    def _EM_iterate_once(self, data):
        N = len(data)
        K = self.nclasses
        gamma_K_N = numpy.empty((K, N))

        sigma_matrix = numpy.zeros((K, self.dim, self.dim))
        for k in range(K):
            sigma_matrix[k] = numpy.diag(self.sigma[k])

        for n in range(N):
            gamma_K_N[:, n] = gamma(data[n], self.pi, self.mu, sigma_matrix)[1]

        gamma_sum_K = numpy.sum(gamma_K_N, axis=1)

        pi_new = 1. / N * gamma_sum_K

        mu_new = numpy.dot(numpy.matrix(gamma_K_N), numpy.matrix(data))
        for i in range(K):
            mu_new[i, :] /= gamma_sum_K[i]

        sigma_new = numpy.zeros((K, self.dim))
        for i in range(K):
            for n in range(N):
                x_temp = numpy.matrix(data[n].reshape(self.dim,
                                                      1)) - mu_new[i, :]
                sigma_new[i] += gamma_K_N[i][n] * numpy.diag(
                    x_temp * x_temp.transpose())
            sigma_new[i] /= gamma_sum_K[i]

        self.pi = pi_new
        self.mu = mu_new
        self.sigma = sigma_new
예제 #4
0
def to_led(path=None, n_led=50, n_ang=32):

    img = mpimg.imread(path)  # Levanta la imagen

    wx, wy, dim = img.shape  # Me da las dimensiones del frame en pixeles
    center_x = int(
        (wx - 1) / 2)  # Calcula la cordenada x del centro de la imagen
    center_y = int(
        (wy - 1) / 2)  # Calcula la cordenada y del centro de la imagen
    rad = min(
        center_x,
        center_y)  # Calcula el radio que barre la imagen dentro del frame

    led = []

    intensidad = [int(31 * i**2 / n_led**2) for i in range(n_led)]

    for m in range(0, n_ang):
        for n in range(0, n_led):
            x = center_x + int(rad * (n + 1) / n_led * cos(m * 2 * pi / n_ang))
            y = center_y + int(rad * (n + 1) / n_led * sin(m * 2 * pi / n_ang))
            tupla = tuple(gamma(int(255 * g))
                          for g in img[x, y, 0:3]) + (intensidad[n], )
            led.append(pack('BBBB', *tupla))
    return b''.join(led)
    def _compute_statistics(self, data):
        ndata = len(data)
        gamma_K_N = numpy.empty((self.nclasses, ndata))
        sigma_matrix = numpy.zeros((self.nclasses, self.dim, self.dim))
        for k in range(self.nclasses):
            sigma_matrix[k] = numpy.diag(self.sigma[k])
        for t in range(ndata):
            gamma_K_N[:, t] = gamma(data[t], self.pi, self.mu, sigma_matrix)[1]

        self.stat0 = numpy.sum(gamma_K_N, axis=1)
        self.stat1 = numpy.array(numpy.matrix(gamma_K_N) * numpy.matrix(data))
        self.stat2 = numpy.array(
            numpy.matrix(gamma_K_N) *
            numpy.matrix([[i * j for i, j in zip(*row)]
                          for row in zip(data, data)]))
예제 #6
0
from gamma import gamma
import numpy as np
from matplotlib import pyplot as plt

k = 4.551
gam = gamma(k/2, 0.00000001)

def chi2(x):
    """
    Calcula la funcion Chi^2 usando la funcion gamma calculada arriba y k=4.551

    Params:
        :param x: el valor para el que se calculara chi
    """
    denom = 2**(k/2) * gam
    return x**((k/2-1)) * np.exp(-x/2) * (1/denom)


x=np.linspace(0,25, 100)
plt.plot(x, chi2(x))
plt.xlabel("x", fontsize=16)
plt.ylabel("$\chi ^2(x)$", fontsize=16)
plt.show()
예제 #7
0
imsave('I0.png', I0)
imsave('I1.png', I1)
# create D1
import dehaze1

I2 = imread("D1.png")

# create D2
import dehaze2

I3 = imread("D2.png")

# gamma
im = cv2.imread("D2.png")
G1 = gamma.gamma(im)
I4 = cv2.imread("G1.png")
#I0 = cv2.imread("I0.png")

imsave('I0/' + imgName + 'I0.png', I0)
imsave('I1/' + imgName + 'I1.png', I1)
imsave('I2/' + imgName + 'I2.png', I2)
imsave('I3/' + imgName + 'I3.png', I3)
imsave('I4/' + imgName + 'I4.png', G1)

#PSNR&MAE
print('PSNR I0-I2 :', cv2.PSNR(I0, I2))
print('PSNR I0-I3 :', cv2.PSNR(I0, I3))
print('PSNR I0-I4 :', cv2.PSNR(I0, I4))

#MAE