예제 #1
0
파일: test_fit.py 프로젝트: gfiusa/gammapy
def test_names(geom, geom_etrue, sky_model):

    m = Map.from_geom(geom)
    m.quantity = 0.2 * np.ones(m.data.shape)
    background_model1 = BackgroundModel(m, name="bkg1")
    assert background_model1.name == "bkg1"

    c_map1 = Map.from_geom(geom)
    c_map1.quantity = 0.3 * np.ones(c_map1.data.shape)

    model1 = sky_model.copy()
    assert model1.name != sky_model.name
    model1 = sky_model.copy(name="model1")
    assert model1.name == "model1"
    model2 = sky_model.copy(name="model2")

    dataset1 = MapDataset(
        counts=c_map1,
        background_model=background_model1,
        models=Models([model1, model2]),
        exposure=get_exposure(geom_etrue),
    )

    dataset2 = dataset1.copy()
    assert dataset2.name != dataset1.name
    assert dataset2.background_model
    dataset2 = dataset1.copy(name="dataset2")
    assert dataset2.name == "dataset2"
    assert dataset2.background_model.name == "bkg1"
    assert dataset1.background_model is not dataset2.background_model
    assert dataset1.models.names == dataset2.models.names
    assert dataset1.models is not dataset2.models
예제 #2
0
파일: test_fit.py 프로젝트: gfiusa/gammapy
def test_to_image(geom):

    counts = Map.read(
        "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-counts-cube.fits.gz")
    background = Map.read(
        "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-background-cube.fits.gz")
    background = BackgroundModel(background)

    exposure = Map.read(
        "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-exposure-cube.fits.gz")
    exposure = exposure.sum_over_axes(keepdims=True)
    dataset = MapDataset(counts=counts,
                         background_model=background,
                         exposure=exposure)
    dataset_im = dataset.to_image()
    assert dataset_im.mask_safe is None
    assert dataset_im.counts.data.sum() == dataset.counts.data.sum()
    assert_allclose(dataset_im.background_model.map.data.sum(),
                    28548.625,
                    rtol=1e-5)

    ebounds = np.logspace(-1.0, 1.0, 3)
    axis = MapAxis.from_edges(ebounds, name="energy", unit=u.TeV, interp="log")
    geom = WcsGeom.create(skydir=(0, 0),
                          binsz=0.5,
                          width=(1, 1),
                          frame="icrs",
                          axes=[axis])
    dataset = MapDataset.create(geom)

    # Check map_safe handling
    data = np.array([[[False, True], [True, True]],
                     [[False, False], [True, True]]])
    dataset.mask_safe = WcsNDMap.from_geom(geom=geom, data=data)

    dataset_im = dataset.to_image()
    assert dataset_im.mask_safe.data.dtype == bool

    desired = np.array([[False, True], [True, True]])
    assert (dataset_im.mask_safe.data == desired).all()

    # Check that missing entries in the dataset do not break
    dataset_copy = dataset.copy()
    dataset_copy.exposure = None
    dataset_copy.background_model = None
    dataset_im = dataset_copy.to_image()
    assert dataset_im.exposure is None
    assert dataset_im.background_model is None

    dataset_copy = dataset.copy()
    dataset_copy.counts = None
    dataset_im = dataset_copy.to_image()
    assert dataset_im.counts is None