image_height = image_width ndim_z = 50 # specify discriminator discriminator_sequence_filename = args.model_dir + "/discriminator.json" if os.path.isfile(discriminator_sequence_filename): print "loading", discriminator_sequence_filename with open(discriminator_sequence_filename, "r") as f: try: params = json.load(f) except Exception as e: raise Exception( "could not load {}".format(discriminator_sequence_filename)) else: config = DiscriminatorParams() config.weight_init_std = 0.001 config.weight_initializer = "Normal" config.use_weightnorm = False config.nonlinearity = "elu" config.optimizer = "Adam" config.learning_rate = 0.0001 config.momentum = 0.5 config.gradient_clipping = 10 config.weight_decay = 0 config.use_feature_matching = False config.use_minibatch_discrimination = False discriminator = Sequential(weight_initializer=config.weight_initializer, weight_init_std=config.weight_init_std) discriminator.add(gaussian_noise(std=0.3))
except: pass # specify discriminator discriminator_sequence_filename = args.model_dir + "/discriminator.json" if os.path.isfile(discriminator_sequence_filename): print "loading", discriminator_sequence_filename with open(discriminator_sequence_filename, "r") as f: try: discriminator_params = json.load(f) except Exception as e: raise Exception( "could not load {}".format(discriminator_sequence_filename)) else: config = DiscriminatorParams() config.a = 0 config.b = 1 config.c = 1 config.weight_std = 0.01 config.weight_initializer = "Normal" config.use_weightnorm = False config.nonlinearity = "leaky_relu" config.optimizer = "adam" config.learning_rate = 0.0001 config.momentum = 0.5 config.gradient_clipping = 1 config.weight_decay = 0 discriminator = Sequential() discriminator.add(Linear(None, 128, use_weightnorm=config.use_weightnorm))
image_height = image_width ndim_latent_code = 50 # specify discriminator discriminator_sequence_filename = args.model_dir + "/discriminator.json" if os.path.isfile(discriminator_sequence_filename): print "loading", discriminator_sequence_filename with open(discriminator_sequence_filename, "r") as f: try: params = json.load(f) except Exception as e: raise Exception( "could not load {}".format(discriminator_sequence_filename)) else: config = DiscriminatorParams() config.ndim_input = image_width * image_height config.clamp_lower = -0.01 config.clamp_upper = 0.01 config.num_critic = 5 config.weight_init_std = 0.001 config.weight_initializer = "Normal" config.use_weightnorm = False config.nonlinearity = "leaky_relu" config.optimizer = "rmsprop" config.learning_rate = 0.0001 config.momentum = 0.5 config.gradient_clipping = 1 config.weight_decay = 0 config.use_feature_matching = False config.use_minibatch_discrimination = False
ndim_z = 50 # specify discriminator discriminator_sequence_filename = args.model_dir + "/discriminator.json" if os.path.isfile(discriminator_sequence_filename): print "loading", discriminator_sequence_filename with open(discriminator_sequence_filename, "r") as f: try: params = json.load(f) chainer.global_config.discriminator = to_object(params["config"]) except Exception as e: raise Exception( "could not load {}".format(discriminator_sequence_filename)) else: config = DiscriminatorParams() config.clamp_lower = -0.01 config.clamp_upper = 0.01 config.num_critic = 1 config.weight_std = 0.001 config.weight_initializer = "Normal" config.nonlinearity = "leaky_relu" config.optimizer = "rmsprop" config.learning_rate = 0.0001 config.momentum = 0.5 config.gradient_clipping = 10 config.weight_decay = 0 chainer.global_config.discriminator = config discriminator = Sequential()
image_height = image_width ndim_latent_code = 50 # specify discriminator discriminator_sequence_filename = args.model_dir + "/discriminator.json" if os.path.isfile(discriminator_sequence_filename): print "loading", discriminator_sequence_filename with open(discriminator_sequence_filename, "r") as f: try: discriminator_params = json.load(f) except Exception as e: raise Exception( "could not load {}".format(discriminator_sequence_filename)) else: config = DiscriminatorParams() config.a = 0 config.b = 1 config.c = 1 config.weight_std = 0.01 config.weight_initializer = "Normal" config.use_weightnorm = False config.nonlinearity = "leaky_relu" config.optimizer = "adam" config.learning_rate = 0.0001 config.momentum = 0.5 config.gradient_clipping = 1 config.weight_decay = 0 discriminator = Sequential() discriminator.add(Linear(None, 500, use_weightnorm=config.use_weightnorm))