예제 #1
0
    def test_ppo_pendulum(self):
        """Test PPO with Pendulum environment."""
        deterministic.set_seed(0)

        episodes_per_task = 5
        max_episode_length = self.env.spec.max_episode_length

        task_sampler = SetTaskSampler(
            HalfCheetahDirEnv,
            wrapper=lambda env, _: normalize(GymEnv(
                env, max_episode_length=max_episode_length),
                                             expected_action_scale=10.))

        meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                       n_test_tasks=1,
                                       n_test_episodes=10)

        trainer = Trainer(snapshot_config)
        algo = MAMLVPG(env=self.env,
                       policy=self.policy,
                       task_sampler=self.task_sampler,
                       value_function=self.value_function,
                       meta_batch_size=5,
                       discount=0.99,
                       gae_lambda=1.,
                       inner_lr=0.1,
                       num_grad_updates=1,
                       meta_evaluator=meta_evaluator)

        trainer.setup(algo, self.env, sampler_cls=LocalSampler)
        last_avg_ret = trainer.train(n_epochs=10,
                                     batch_size=episodes_per_task *
                                     max_episode_length)

        assert last_avg_ret > -5
예제 #2
0
    def test_ppo_pendulum(self):
        """Test PPO with Pendulum environment."""
        deterministic.set_seed(0)

        rollouts_per_task = 5
        max_path_length = 100

        task_sampler = SetTaskSampler(lambda: GarageEnv(
            normalize(HalfCheetahDirEnv(), expected_action_scale=10.)))

        meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                       max_path_length=max_path_length,
                                       n_test_tasks=1,
                                       n_test_rollouts=10)

        runner = LocalRunner(snapshot_config)
        algo = MAMLVPG(env=self.env,
                       policy=self.policy,
                       value_function=self.value_function,
                       max_path_length=max_path_length,
                       meta_batch_size=5,
                       discount=0.99,
                       gae_lambda=1.,
                       inner_lr=0.1,
                       num_grad_updates=1,
                       meta_evaluator=meta_evaluator)

        runner.setup(algo, self.env)
        last_avg_ret = runner.train(n_epochs=10,
                                    batch_size=rollouts_per_task *
                                    max_path_length)

        assert last_avg_ret > -5
예제 #3
0
def load_mamlvpg(env_name="MountainCarContinuous-v0"):
    """Return an instance of the MAML-VPG algorithm."""
    env = GarageEnv(env_name=env_name)
    policy = DeterministicMLPPolicy(name='policy',
                                    env_spec=env.spec,
                                    hidden_sizes=[64, 64])
    vfunc = GaussianMLPValueFunction(env_spec=env.spec)

    task_sampler = SetTaskSampler(
        lambda: GarageEnv(normalize(env, expected_action_scale=10.)))

    max_path_length = 100
    meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=1,
                                   n_test_rollouts=10)
    algo = MAMLVPG(env=env,
                   policy=policy,
                   value_function=vfunc,
                   max_path_length=max_path_length,
                   meta_batch_size=20,
                   discount=0.99,
                   gae_lambda=1.,
                   inner_lr=0.1,
                   num_grad_updates=1,
                   meta_evaluator=meta_evaluator)
    return algo
예제 #4
0
def maml_vpg_half_cheetah_dir(ctxt, seed, epochs, rollouts_per_task,
                              meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = GarageEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_episode_length = 100

    task_sampler = SetTaskSampler(lambda: GarageEnv(
        normalize(HalfCheetahDirEnv(), expected_action_scale=10.)))

    meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                   max_episode_length=max_episode_length,
                                   n_test_tasks=1,
                                   n_test_rollouts=10)

    runner = LocalRunner(ctxt)
    algo = MAMLVPG(env=env,
                   policy=policy,
                   value_function=value_function,
                   max_episode_length=max_episode_length,
                   meta_batch_size=meta_batch_size,
                   discount=0.99,
                   gae_lambda=1.,
                   inner_lr=0.1,
                   num_grad_updates=1,
                   meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_episode_length)
예제 #5
0
def run_task(snapshot_config, *_):
    """Set up environment and algorithm and run the task.

    Args:
        snapshot_config (garage.experiment.SnapshotConfig): The snapshot
            configuration used by LocalRunner to create the snapshotter.
            If None, it will create one with default settings.
        _ : Unused parameters

    """
    env = GarageEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    rollouts_per_task = 20
    max_path_length = 100

    runner = LocalRunner(snapshot_config)
    algo = MAMLVPG(env=env,
                   policy=policy,
                   baseline=baseline,
                   max_path_length=max_path_length,
                   meta_batch_size=40,
                   discount=0.99,
                   gae_lambda=1.,
                   inner_lr=0.1,
                   num_grad_updates=1)

    runner.setup(algo, env)
    runner.train(n_epochs=300, batch_size=rollouts_per_task * max_path_length)
예제 #6
0
    def test_ppo_pendulum(self):
        """Test PPO with Pendulum environment."""
        deterministic.set_seed(0)

        rollouts_per_task = 5
        max_path_length = 100

        runner = LocalRunner(snapshot_config)
        algo = MAMLVPG(env=self.env,
                       policy=self.policy,
                       baseline=self.baseline,
                       max_path_length=max_path_length,
                       meta_batch_size=5,
                       discount=0.99,
                       gae_lambda=1.,
                       inner_lr=0.1,
                       num_grad_updates=1)

        runner.setup(algo, self.env)
        last_avg_ret = runner.train(n_epochs=10,
                                    batch_size=rollouts_per_task *
                                    max_path_length)

        assert last_avg_ret > -5
예제 #7
0
def maml_vpg_half_cheetah_dir(ctxt, seed, epochs, episodes_per_task,
                              meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (ExperimentContext): The experiment configuration used by
            :class:`~Trainer` to create the :class:`~Snapshotter`.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        episodes_per_task (int): Number of episodes per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = normalize(GymEnv(HalfCheetahDirEnv(), max_episode_length=100),
                    expected_action_scale=10.)

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_episode_length = env.spec.max_episode_length

    task_sampler = SetTaskSampler(
        HalfCheetahDirEnv,
        wrapper=lambda env, _: normalize(GymEnv(
            env, max_episode_length=max_episode_length),
                                         expected_action_scale=10.))

    meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                   n_test_tasks=1,
                                   n_test_episodes=10)

    sampler = RaySampler(agents=policy,
                         envs=env,
                         max_episode_length=env.spec.max_episode_length)

    trainer = Trainer(ctxt)
    algo = MAMLVPG(env=env,
                   policy=policy,
                   sampler=sampler,
                   task_sampler=task_sampler,
                   value_function=value_function,
                   meta_batch_size=meta_batch_size,
                   discount=0.99,
                   gae_lambda=1.,
                   inner_lr=0.1,
                   num_grad_updates=1,
                   meta_evaluator=meta_evaluator)

    trainer.setup(algo, env)
    trainer.train(n_epochs=epochs,
                  batch_size=episodes_per_task * max_episode_length)