예제 #1
0
    def test_get_action_np(self, hidden_sizes):
        """Test get_action function with numpy inputs."""
        env_spec = GarageEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        act_dim = env_spec.action_space.flat_dim
        obs = np.ones(obs_dim, dtype=np.float32)
        init_std = 2.

        policy = GaussianMLPPolicy(env_spec=env_spec,
                                   hidden_sizes=hidden_sizes,
                                   init_std=init_std,
                                   hidden_nonlinearity=None,
                                   std_parameterization='exp',
                                   hidden_w_init=nn.init.ones_,
                                   output_w_init=nn.init.ones_)

        dist = policy(torch.from_numpy(obs))[0]

        expected_mean = torch.full(
            (act_dim, ), obs_dim * (torch.Tensor(hidden_sizes).prod().item()))
        expected_variance = init_std**2
        action, prob = policy.get_action(obs)

        assert np.array_equal(prob['mean'], expected_mean.numpy())
        assert dist.variance.equal(torch.full((act_dim, ), expected_variance))
        assert action.shape == (act_dim, )
예제 #2
0
    def test_get_action(self, hidden_sizes):
        env_spec = TfEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        act_dim = env_spec.action_space.flat_dim
        obs = torch.ones(obs_dim, dtype=torch.float32)
        init_std = 2.

        policy = GaussianMLPPolicy(env_spec=env_spec,
                                   hidden_sizes=hidden_sizes,
                                   init_std=init_std,
                                   hidden_nonlinearity=None,
                                   std_parameterization='exp',
                                   hidden_w_init=nn.init.ones_,
                                   output_w_init=nn.init.ones_)

        dist = policy(obs)

        expected_mean = torch.full(
            (act_dim, ), obs_dim * (torch.Tensor(hidden_sizes).prod().item()))
        expected_variance = init_std**2
        action, prob = policy.get_action(obs)

        assert prob['mean'].equal(expected_mean)
        assert dist.variance.equal(torch.full((act_dim, ), expected_variance))
        assert action.shape == (act_dim, )
예제 #3
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = normalize(GymEnv(HalfCheetahDirEnv(),
                                 max_episode_length=100),
                          expected_action_scale=10.)
     task_sampler = SetTaskSampler(lambda: normalize(
         GymEnv(HalfCheetahDirEnv()), expected_action_scale=10.))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec,
                                                    hidden_sizes=(32, 32))
     self.algo = MAMLPPO(env=self.env,
                         policy=self.policy,
                         sampler=None,
                         task_sampler=task_sampler,
                         value_function=self.value_function,
                         meta_batch_size=5,
                         discount=0.99,
                         gae_lambda=1.,
                         inner_lr=0.1,
                         num_grad_updates=1)
예제 #4
0
    def test_get_actions(self, batch_size, hidden_sizes):
        """Test get_actions function."""
        env_spec = GymEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        act_dim = env_spec.action_space.flat_dim
        obs = torch.ones([batch_size, obs_dim], dtype=torch.float32)
        init_std = 2.

        policy = GaussianMLPPolicy(env_spec=env_spec,
                                   hidden_sizes=hidden_sizes,
                                   init_std=init_std,
                                   hidden_nonlinearity=None,
                                   std_parameterization='exp',
                                   hidden_w_init=nn.init.ones_,
                                   output_w_init=nn.init.ones_)

        dist = policy(obs)[0]

        expected_mean = torch.full([batch_size, act_dim],
                                   obs_dim *
                                   (torch.Tensor(hidden_sizes).prod().item()),
                                   dtype=torch.float)
        expected_variance = init_std**2
        action, prob = policy.get_actions(obs)

        assert np.array_equal(prob['mean'], expected_mean.numpy())
        assert dist.variance.equal(
            torch.full((batch_size, act_dim),
                       expected_variance,
                       dtype=torch.float))
        assert action.shape == (batch_size, act_dim)
예제 #5
0
 def test_entropy(self):
     """Test get_entropy method of the policy."""
     env_spec = TfEnv(DummyBoxEnv())
     init_std = 1.
     obs = torch.Tensor([0, 0, 0, 0]).float()
     policy = GaussianMLPPolicy(env_spec=env_spec,
                                hidden_sizes=(1, ),
                                init_std=init_std,
                                hidden_nonlinearity=None,
                                std_parameterization='exp',
                                hidden_w_init=nn.init.ones_,
                                output_w_init=nn.init.ones_)
     dist = policy(obs)
     assert torch.allclose(dist.entropy(), policy.entropy(obs))
예제 #6
0
def trpo_pendulum(ctxt=None, seed=1):
    """Train TRPO with InvertedDoublePendulum-v2 environment.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    env = TfEnv(env_name='InvertedDoublePendulum-v2')

    runner = LocalRunner(ctxt)

    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[32, 32],
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = TRPO(env_spec=env.spec,
                policy=policy,
                value_function=value_function,
                max_path_length=100,
                discount=0.99,
                center_adv=False)

    runner.setup(algo, env)
    runner.train(n_epochs=100, batch_size=1024)
예제 #7
0
def vpg_pendulum(ctxt=None, seed=1):
    """Train PPO with InvertedDoublePendulum-v2 environment.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by Trainer to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    env = GymEnv('InvertedDoublePendulum-v2')

    trainer = Trainer(ctxt)

    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[64, 64],
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = VPG(env_spec=env.spec,
               policy=policy,
               value_function=value_function,
               discount=0.99,
               center_adv=False)

    trainer.setup(algo, env)
    trainer.train(n_epochs=100, batch_size=10000)
예제 #8
0
def main(ctxt=None, seed=0):
    env = GymEnv('Pendulum-v0')

    print('here env')
    experts = load_latest_experts(args.experts_dir, n=5)

    print('here experts')
    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[32, 32],
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    irl_model = GAIL(env_spec=env.spec, expert_trajs=experts)
    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = TRPO(env_spec=env.spec,
                policy=policy,
                value_function=value_function,
                discount=0.99,
                center_adv=False)

    trainer = IRLTrainer(ctxt)
    trainer.setup(algo,
                  env,
                  irl_model,
                  baseline,
                  n_itr=args.n_iter,
                  sampler_cls=MultiprocessingSampler,
                  zero_environment_reward=True)
    trainer.train(n_epochs=1, batch_size=args.batch_size)
def maml_trpo_metaworld_ml1_push(ctxt, seed, epochs, rollouts_per_task,
                                 meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by Trainer to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)

    ml1 = metaworld.ML1('push-v1')
    tasks = MetaWorldTaskSampler(ml1, 'train')
    env = tasks.sample(1)[0]()
    test_sampler = SetTaskSampler(MetaWorldSetTaskEnv,
                                  env=MetaWorldSetTaskEnv(ml1, 'test'))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(100, 100),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=[32, 32],
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    meta_evaluator = MetaEvaluator(test_task_sampler=test_sampler,
                                   n_test_tasks=1,
                                   n_exploration_eps=rollouts_per_task)

    sampler = RaySampler(agents=policy,
                         envs=env,
                         max_episode_length=env.spec.max_episode_length,
                         n_workers=meta_batch_size)

    trainer = Trainer(ctxt)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    sampler=sampler,
                    task_sampler=tasks,
                    value_function=value_function,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    trainer.setup(algo, env)
    trainer.train(n_epochs=epochs,
                  batch_size=rollouts_per_task * env.spec.max_episode_length)
예제 #10
0
def bc_point(ctxt=None, loss='log_prob'):
    """Run Behavioral Cloning on garage.envs.PointEnv.

    Args:
        ctxt (ExperimentContext): Provided by wrap_experiment.
        loss (str): Either 'log_prob' or 'mse'

    """
    trainer = Trainer(ctxt)
    goal = np.array([1., 1.])
    env = PointEnv(goal=goal, max_episode_length=200)
    expert = OptimalPolicy(env.spec, goal=goal)
    policy = GaussianMLPPolicy(env.spec, [8, 8])
    batch_size = 1000
    sampler = RaySampler(agents=expert,
                         envs=env,
                         max_episode_length=env.spec.max_episode_length)
    algo = BC(env.spec,
              policy,
              batch_size=batch_size,
              source=expert,
              sampler=sampler,
              policy_lr=1e-2,
              loss=loss)
    trainer.setup(algo, env)
    trainer.train(100, batch_size=batch_size)
예제 #11
0
def test_maml_trpo_dummy_named_env():
    """Test with dummy environment that has env_name."""
    env = GarageEnv(
        normalize(DummyMultiTaskBoxEnv(), expected_action_scale=10.))
    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )
    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32))

    rollouts_per_task = 2
    max_episode_length = 100

    runner = LocalRunner(snapshot_config)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_episode_length=max_episode_length,
                    meta_batch_size=5,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1)

    runner.setup(algo, env, sampler_cls=LocalSampler)
    runner.train(n_epochs=2, batch_size=rollouts_per_task * max_episode_length)
예제 #12
0
def ppo_setup(env, trainer, args):
    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[args.hidden_dim] * args.depth,
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=[args.hidden_dim] *
                                              args.depth,
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = PPO(env_spec=env.spec,
               policy=policy,
               value_function=value_function,
               policy_optimizer=OptimizerWrapper(
                   (torch.optim.Adam, dict(lr=args.policy_lr)),
                   policy,
                   max_optimization_epochs=args.n_minibatches,
                   minibatch_size=args.minibatch_size),
               vf_optimizer=OptimizerWrapper(
                   (torch.optim.Adam, dict(lr=args.vf_lr)),
                   value_function,
                   max_optimization_epochs=args.n_minibatches,
                   minibatch_size=args.minibatch_size),
               **convert_kwargs(args, PPO))
    trainer.setup(algo,
                  env,
                  sampler_cls=LocalSampler,
                  worker_class=VecWorker,
                  worker_args={'n_envs': 8})
    return algo
예제 #13
0
def maml_trpo_metaworld_ml10(ctxt, seed, epochs, rollouts_per_task,
                             meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = GarageEnv(
        normalize(mwb.ML10.get_train_tasks(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(100, 100),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_episode_length = 100

    test_task_names = mwb.ML10.get_test_tasks().all_task_names
    test_tasks = [
        GarageEnv(
            normalize(mwb.ML10.from_task(task), expected_action_scale=10.))
        for task in test_task_names
    ]
    test_sampler = EnvPoolSampler(test_tasks)

    meta_evaluator = MetaEvaluator(test_task_sampler=test_sampler,
                                   max_episode_length=max_episode_length,
                                   n_test_tasks=len(test_task_names))

    runner = LocalRunner(ctxt)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_episode_length=max_episode_length,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_episode_length)
예제 #14
0
def run_task(snapshot_config, *_):
    """Set up environment and algorithm and run the task.

    Args:
        snapshot_config (garage.experiment.SnapshotConfig): The snapshot
            configuration used by LocalRunner to create the snapshotter.
            If None, it will create one with default settings.
        _ : Unused parameters

    """
    env = TfEnv(env_name='InvertedDoublePendulum-v2')

    runner = LocalRunner(snapshot_config)

    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[32, 32],
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = TRPO(env_spec=env.spec,
                policy=policy,
                value_function=value_function,
                max_path_length=100,
                discount=0.99,
                center_adv=False)

    runner.setup(algo, env)
    runner.train(n_epochs=100, batch_size=1024)
예제 #15
0
def run_task(snapshot_config, *_):
    """Set up environment and algorithm and run the task.

    Args:
        snapshot_config (garage.experiment.SnapshotConfig): The snapshot
            configuration used by LocalRunner to create the snapshotter.
            If None, it will create one with default settings.
        _ : Unused parameters

    """
    env = TfEnv(env_name='Pusher3DOF-v1')

    runner = LocalRunner(snapshot_config)

    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[32, 32],
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = TRPO(env_spec=env.spec,
                policy=policy,
                baseline=baseline,
                max_path_length=49,
                discount=0.99,
                center_adv=False,
                max_kl_step=0.005,
                **copyparams)

    #runner.setup(algo, env)
    #runner.train(n_epochs=100, batch_size=50*250)
    runner.restore(
        "/home/dell/garage/data/local/pusher/pusher_2020_06_01_23_45_24_0001")
    runner.resume(n_epochs=800)
예제 #16
0
def test_maml_trpo_pendulum():
    """Test PPO with Pendulum environment."""
    env = GarageEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))
    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )
    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32))

    rollouts_per_task = 5
    max_episode_length = 100

    runner = LocalRunner(snapshot_config)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_episode_length=max_episode_length,
                    meta_batch_size=5,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1)

    runner.setup(algo, env, sampler_cls=LocalSampler)
    last_avg_ret = runner.train(n_epochs=5,
                                batch_size=rollouts_per_task *
                                max_episode_length)

    assert last_avg_ret > -5

    env.close()
예제 #17
0
def maml_trpo_half_cheetah_dir(ctxt, seed, epochs, episodes_per_task,
                               meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (ExperimentContext): The experiment configuration used by
            :class:`~Trainer` to create the :class:`~Snapshotter`.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        episodes_per_task (int): Number of episodes per epoch per task for
            training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    max_episode_length = 100
    env = normalize(GymEnv(HalfCheetahDirEnv(),
                           max_episode_length=max_episode_length),
                    expected_action_scale=10.)

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[64, 64],
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=[32, 32],
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    task_sampler = SetTaskSampler(
        HalfCheetahDirEnv,
        wrapper=lambda env, _: normalize(GymEnv(
            env, max_episode_length=max_episode_length),
                                         expected_action_scale=10.))

    meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                   n_test_tasks=1,
                                   n_test_episodes=10)

    trainer = Trainer(ctxt)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    task_sampler=task_sampler,
                    value_function=value_function,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    trainer.setup(algo, env)
    trainer.train(n_epochs=epochs,
                  batch_size=episodes_per_task * env.spec.max_episode_length)
예제 #18
0
def maml_trpo_metaworld_ml45(ctxt, seed, epochs, episodes_per_task,
                             meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (ExperimentContext): The experiment configuration used by
            :class:`~Trainer` to create the :class:`~Snapshotter`.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        episodes_per_task (int): Number of episodes per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    ml45 = metaworld.ML45()

    # pylint: disable=missing-return-doc,missing-return-type-doc
    def wrap(env, _):
        return normalize(env, expected_action_scale=10.0)

    train_task_sampler = MetaWorldTaskSampler(ml45, 'train', wrap)
    test_env = wrap(MetaWorldSetTaskEnv(ml45, 'test'), None)
    test_task_sampler = SetTaskSampler(MetaWorldSetTaskEnv,
                                       env=test_env,
                                       wrapper=wrap)
    env = train_task_sampler.sample(45)[0]()

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(100, 100),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    meta_evaluator = MetaEvaluator(test_task_sampler=test_task_sampler)

    trainer = Trainer(ctxt)
    algo = MAMLTRPO(env=env,
                    task_sampler=train_task_sampler,
                    policy=policy,
                    value_function=value_function,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    trainer.setup(algo, env, n_workers=meta_batch_size)
    trainer.train(n_epochs=epochs,
                  batch_size=episodes_per_task * env.spec.max_episode_length)
예제 #19
0
 def setup_method(self):
     self.env = GarageEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.baseline = LinearFeatureBaseline(env_spec=self.env.spec)
예제 #20
0
def test_policy_get_actions(mock_model, input_dim, output_dim, hidden_sizes):
    action = torch.randn((output_dim, ))

    mock_dist = mock.MagicMock()
    mock_dist.rsample.return_value = action

    mock_model.return_value = mock_dist

    env_spec = mock.MagicMock()
    env_spec.observation_space.flat_dim = input_dim
    env_spec.action_space.flat_dim = output_dim

    policy = GaussianMLPPolicy(env_spec, mock_model)

    input = torch.ones(input_dim)
    sample = policy.get_actions(input)

    assert np.array_equal(sample, action.detach().numpy())
예제 #21
0
def mtppo_metaworld_mt50(ctxt, seed, epochs, batch_size, n_workers, n_tasks):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by Trainer to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        batch_size (int): Number of environment steps in one batch.
        n_workers (int): The number of workers the sampler should use.
        n_tasks (int): Number of tasks to use. Should be a multiple of 50.

    """
    set_seed(seed)
    mt10 = metaworld.MT10()
    train_task_sampler = MetaWorldTaskSampler(mt10,
                                              'train',
                                              lambda env, _: normalize(env),
                                              add_env_onehot=True)
    assert n_tasks % 50 == 0
    assert n_tasks <= 2500
    envs = [env_up() for env_up in train_task_sampler.sample(n_tasks)]
    env = MultiEnvWrapper(envs,
                          sample_strategy=round_robin_strategy,
                          mode='vanilla')

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    sampler = RaySampler(agents=policy,
                         envs=env,
                         max_episode_length=env.spec.max_episode_length,
                         n_workers=n_workers)

    algo = PPO(env_spec=env.spec,
               policy=policy,
               value_function=value_function,
               sampler=sampler,
               discount=0.99,
               gae_lambda=0.95,
               center_adv=True,
               lr_clip_range=0.2)

    trainer = Trainer(ctxt)
    trainer.setup(algo, env)
    trainer.train(n_epochs=epochs, batch_size=batch_size)
예제 #22
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = GarageEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = LinearFeatureBaseline(env_spec=self.env.spec)
예제 #23
0
    def test_get_action_dict_space(self):
        """Test if observations from dict obs spaces are properly flattened."""
        env = GymEnv(DummyDictEnv(obs_space_type='box', act_space_type='box'))
        policy = GaussianMLPPolicy(env_spec=env.spec,
                                   hidden_nonlinearity=None,
                                   hidden_sizes=(1, ),
                                   hidden_w_init=nn.init.ones_,
                                   output_w_init=nn.init.ones_)
        obs = env.reset()[0]

        action, _ = policy.get_action(obs)
        assert env.action_space.shape == action.shape

        actions, _ = policy.get_actions(np.array([obs, obs]))
        for action in actions:
            assert env.action_space.shape == action.shape
        actions, _ = policy.get_actions(np.array([obs, obs]))
        for action in actions:
            assert env.action_space.shape == action.shape
예제 #24
0
def maml_trpo(ctxt, seed, epochs, rollouts_per_task, meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    # @TODO blowing up here...
    env = GarageEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=[64, 64],
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=[32, 32],
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_path_length = 100

    task_sampler = SetTaskSampler(lambda: GarageEnv(
        normalize(HalfCheetahDirEnv(), expected_action_scale=10.)))

    meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=1,
                                   n_test_rollouts=10)

    runner = LocalRunner(ctxt)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_path_length)
예제 #25
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = GarageEnv(
         normalize(HalfCheetahDirEnv(), expected_action_scale=10.))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.baseline = LinearFeatureBaseline(env_spec=self.env.spec)
예제 #26
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = normalize(
         GymEnv('InvertedDoublePendulum-v2', max_episode_length=100))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec)
예제 #27
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = GarageEnv(
         normalize(HalfCheetahDirEnv(), expected_action_scale=10.))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = LinearFeatureBaseline(env_spec=self.env.spec)
     self.algo = MAMLPPO(env=self.env,
                         policy=self.policy,
                         value_function=self.value_function,
                         max_path_length=100,
                         meta_batch_size=5,
                         discount=0.99,
                         gae_lambda=1.,
                         inner_lr=0.1,
                         num_grad_updates=1)
예제 #28
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = normalize(GymEnv(HalfCheetahDirEnv()),
                          expected_action_scale=10.)
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec,
                                                    hidden_sizes=(32, 32))
예제 #29
0
    def test_is_pickleable(self, batch_size, hidden_sizes):
        env_spec = TfEnv(DummyBoxEnv())
        obs_dim = env_spec.observation_space.flat_dim
        obs = torch.ones([batch_size, obs_dim], dtype=torch.float32)
        init_std = 2.

        policy = GaussianMLPPolicy(env_spec=env_spec,
                                   hidden_sizes=hidden_sizes,
                                   init_std=init_std,
                                   hidden_nonlinearity=None,
                                   std_parameterization='exp',
                                   hidden_w_init=nn.init.ones_,
                                   output_w_init=nn.init.ones_)

        output1_action, output1_prob = policy.get_actions(obs)

        p = pickle.dumps(policy)
        policy_pickled = pickle.loads(p)
        output2_action, output2_prob = policy_pickled.get_actions(obs)

        assert output1_prob['mean'].equal(output2_prob['mean'])
        assert output1_action.shape == output2_action.shape
예제 #30
0
def tutorial_vpg(ctxt=None):
    """Train VPG with PointEnv environment.

    Args:
        ctxt (ExperimentContext): The experiment configuration used by
            :class:`~LocalRunner` to create the :class:`~Snapshotter`.

    """
    set_seed(100)
    runner = LocalRunner(ctxt)
    env = PointEnv()
    policy = GaussianMLPPolicy(env.spec)
    algo = SimpleVPG(env.spec, policy)
    runner.setup(algo, env)
    runner.train(n_epochs=200, batch_size=4000)