def cpu_core(clock, data_in, pc_in, write_pc, debug=False): """ the core CPU state machine executes a 4 state loop continuously s0: fetch address from pc s1: fetch value from address and increment pc s2: fetch address from pc s3: store value to address and increment pc """ network = clock.network word_size = len(data_in) # step through the 4 states in order state = PlaceholderWord(network, 2) incr, c = ripple_incr(state) state.replace(register(incr, clock)) s0, s1, s2, s3 = address_decode(state) # pc increments in s1 and s3, incoming pc writes from the jump module are taken in s3 pc = PlaceholderWord(network, word_size) incr, c = ripple_incr(pc) jumping = And(write_pc, s3) new_pc = word_mux([jumping], incr, pc_in) clock_pc = And(clock, Or(s1, s3)) pc.replace(register(new_pc, clock_pc)) # clock in address in s0 and s2 addr = register(data_in, And(clock, Or(s0, s2))) # set address lines to pc in s0 and s2 and to the previously fetched address in s1 and s3 addr_out = word_switch([Or(s0, s2), Or(s1, s3)], pc, addr) # read in data in s1 data = register(data_in, And(clock, s1)) # write out data in s3 write_out = s3 data_out = data if debug: clock.watch('clock') s0.watch('s0') s1.watch('s1') s2.watch('s2') s3.watch('s3') jumping.watch('jumping') clock_pc.watch('clock pc') write_out.watch('write out') return addr_out, data_out, write_out
def computer(clock, rom_content): network = clock.network # cpu data_in = PlaceholderWord(network, WORD_SIZE) pc_in = PlaceholderWord(network, WORD_SIZE) pc_write = Placeholder(network) address, data_out, write_out = cpu_core.cpu_core(clock, data_in, pc_in, pc_write) # rom rom_write = Placeholder(network) rom_data = memory.rom(clock, rom_write, address, data_out, ROM_SIZE, rom_content) rom_module = Module('rom', ROM_BASE, ROM_SIZE, rom_data, rom_write) # add add_write = Placeholder(network) add_data = math.add(clock, add_write, address, data_out) add_module = Module('add', ADD_BASE, 2, add_data, add_write) # sub sub_write = Placeholder(network) sub_data = math.sub(clock, sub_write, address, data_out) sub_module = Module('sub', SUB_BASE, 2, sub_data, sub_write) # mult mult_write = Placeholder(network) mult_data = math.mult(clock, mult_write, address, data_out) mult_module = Module('mult', MULT_BASE, 2, mult_data, mult_write) # shift right shr_write = Placeholder(network) shr_data = math.shift_right(clock, shr_write, address, data_out) shr_module = Module('shr', SHR_BASE, 2, shr_data, shr_write) # lit low_literal_write = Placeholder(network) low_literal_data = literals.low_literal(clock, low_literal_write, address, data_out, LIT_SIZE) low_literal_module = Module('lit', LIT_BASE, LIT_SIZE, low_literal_data, low_literal_write) # print print_write = Placeholder(network) print_data = memory.memory(clock, print_write, address, data_out, 0) print_module = Module('print', PRINT_BASE, 0, print_data, print_write) # ram ram_write = Placeholder(network) ram_data = memory.memory(clock, ram_write, address, data_out, RAM_SIZE) ram_module = Module('ram', RAM_BASE, RAM_SIZE, ram_data, ram_write) # jump jump_write = Placeholder(network) jump_data, _pc_in, _pc_write = jump.jump(clock, jump_write, address, data_out) pc_in.replace(_pc_in) pc_write.replace(_pc_write) jump_module = Module('jump', JUMP_BASE, 2, jump_data, jump_write) modules = [ rom_module, low_literal_module, ram_module, add_module, sub_module, mult_module, jump_module, print_module, shr_module, ] # bus ties it all together module_data_lines = [(m.base_address, m.address_size, m.data_lines) for m in modules] data_from_bus, write_lines = bus.bus(address, write_out, module_data_lines) data_in.replace(data_from_bus) for write_line, module in zip(write_lines, modules): module.write_line.replace(write_line) # print out the module sizes print('cpu', data_out[0].block.size) for module in modules: print(module.name, module.data_lines[0].block.size) print('bus', data_from_bus[0].block.size) print('total', network.get_size()) return print_write, print_data
def test_jmp2(): """ same deal as above but with automatic signals so more realistic timing """ network = Network() clock = Switch(network) data_in = BinaryIn(network, 8) pc_in = PlaceholderWord(network, 8) write_pc = Placeholder(network) def step(): network.drain() clock.write(True) network.drain() clock.write(False) network.drain() addr, data_out, write = cpu_core(clock, data_in, pc_in, write_pc) write_pc = write_pc.replace(And(write, mux.equals(102, addr))) pc_in = pc_in.replace(data_out) addr = BinaryOut(addr) data_out = BinaryOut(data_out) # fetch addr1 from pc network.drain() assert not write.read() assert addr.read() == 0 data_in.write(100) # fetch data from addr1 step() assert not write.read() assert addr.read() == 100 data_in.write(200) # fetch addr2 from pc step() assert not write.read() assert addr.read() == 1 data_in.write(102) # write data to addr2 AND PC step() assert write.read() assert addr.read() == 102 assert data_out.read() == 200 # fetch addr1 from pc step() assert not write.read() assert addr.read() == 200 data_in.write(99) # fetch data from addr1 step() assert not write.read() assert addr.read() == 99 data_in.write(98) # fetch addr2 from pc step() assert not write.read() assert addr.read() == 201 data_in.write(97) # write data to addr2 step() assert write.read() assert addr.read() == 97 assert data_out.read() == 98
def test_jmp2(): """ same deal as above but with automatic signals so more realistic timing """ network = Network() clock = Switch(network) data_in = BinaryIn(network, 8) pc_in = PlaceholderWord(network, 8) write_pc = Placeholder(network) def step(): network.drain() clock.write(True) network.drain() clock.write(False) network.drain() addr, data_out, write = cpu_core(clock, data_in, pc_in, write_pc) write_pc = write_pc.replace( And(write, mux.address_matches(102, addr, invert(addr)))) pc_in = pc_in.replace(data_out) addr = BinaryOut(addr) data_out = BinaryOut(data_out) # fetch addr1 from pc network.drain() assert not write.read() assert addr.read() == 0 data_in.write(100) # fetch data from addr1 step() assert not write.read() assert addr.read() == 100 data_in.write(200) # fetch addr2 from pc step() assert not write.read() assert addr.read() == 1 data_in.write(102) # write data to addr2 AND PC step() assert write.read() assert addr.read() == 102 assert data_out.read() == 200 # fetch addr1 from pc step() assert not write.read() assert addr.read() == 200 data_in.write(99) # fetch data from addr1 step() assert not write.read() assert addr.read() == 99 data_in.write(98) # fetch addr2 from pc step() assert not write.read() assert addr.read() == 201 data_in.write(97) # write data to addr2 step() assert write.read() assert addr.read() == 97 assert data_out.read() == 98