def convert_X_to_GCNDataset(self, X): """ Same code as above, dedicated to the predict mode (no need for Y) """ graph_id = 0 nf = X[0] edge = X[1] ef = X[2] nb_node = nf.shape[0] graph = GCNDataset(str(graph_id)) graph.X = nf graph.Y = -np.ones( (nb_node, len(self.labelBinarizer.classes_)), dtype='i') # print(edger) A1 = sp.coo_matrix((np.ones(edge.shape[0]), (edge[:, 0], edge[:, 1])), shape=(nb_node, nb_node)) # A2 = sp.coo_matrix((np.ones(edger.shape[0]), (edger[:, 0], edger[:, 1])), shape=(nb_node, nb_node)) graph.A = A1 # + A2 # JL: unued?? edge_normalizer = Normalizer() # Normalize EA E0 = np.hstack([edge, ef]) # check order # E1 = np.hstack([edger, efr]) # check order graph.E = E0 #graph.compute_NA() graph.compute_NodeEdgeMat() return graph
def convert_lX_lY_to_GCNDataset(self, lX, lY, training=False, test=False, predict=False): gcn_list = [] graph_id = 0 # This has state information here --> move that to DU_Model_ECN ... lys = [] for _, ly in zip(lX, lY): lys.extend(list(ly)) #print (lys) if training: self.labelBinarizer.fit(lys) for lx, ly in zip(lX, lY): nf = lx[0] edge = lx[1] ef = lx[2] nb_node = nf.shape[0] graph = GCNDataset(str(graph_id)) graph.X = nf if training or test: graph.Y = self.labelBinarizer.transform(ly) elif predict: graph.Y = -np.ones( (nb_node, len(self.labelBinarizer.classes_)), dtype='i') else: raise Exception( 'Invalid Usage: one of train,test,predict should be true') # We are making the adacency matrix here # print(edger) A1 = sp.coo_matrix( (np.ones(edge.shape[0]), (edge[:, 0], edge[:, 1])), shape=(nb_node, nb_node)) # A2 = sp.coo_matrix((np.ones(edger.shape[0]), (edger[:, 0], edger[:, 1])), shape=(nb_node, nb_node)) graph.A = A1 # + A2 # JL: unued?? edge_normalizer = Normalizer() # Normalize EA E0 = np.hstack([edge, ef]) # check order # E1 = np.hstack([edger, efr]) # check order graph.E = E0 #graph.compute_NA() graph.compute_NodeEdgeMat() gcn_list.append(graph) graph_id += 1 return gcn_list
def get_graph_test(): #For graph att net X = np.array([[1.0, 0.5], [0.5, 0.5], [0.0, 1.0]], dtype='float32') E = np.array([[0, 1, 1.0], [1, 0, 1.0], [2, 1, 1.0], [1, 2, 1.0]], dtype='float32') Y = np.array([[1, 0], [0, 1], [0, 1]], dtype='int32') gcn = GCNDataset('UT_test_1') gcn.X = X gcn.E = E gcn.Y = Y gcn.compute_NodeEdgeMat() return gcn
def test_logit_convolve(self): # 3 nodes a;b,c a<->b and c<->b a->b<c> X = np.array([[1.0, 2.0], [6.3, 1.0], [4.3, -2.0]]) Y = np.array([[1, 0], [0, 1.0], [1.0, 0.0]]) E = np.array([ [0, 1, 1.0, 1, 0], #edge a->b [1, 0, 1.0, 0, 1], #edge b->a [2, 1, 1.0, 0.0, 1.0] ]) nb_node = 3 gA = GCNDataset('GLogitConvolve') gA.X = X gA.Y = Y gA.E = E gA.A = sp.coo_matrix((np.ones(E.shape[0]), (E[:, 0], E[:, 1])), shape=(nb_node, nb_node)) gA.compute_NodeEdgeMat() gA.compute_NA() #Test in degree out_degree print(gA.in_degree, gA.out_degree) self.assertAlmostEqual(2, gA.in_degree[1]) print(gA.NA_indegree) self.assertAlmostEqual(0.5, gA.NA_indegree[1, 0]) #self.assertAlmostEqual(2, gA.indegree[1]) #now assuming P(Y|a)=[1,0] P(Y|c)=[1,0] and current P(Y|b)=[0.5,0.5] pY = np.array([[1, 0], [0.5, 0.5], [0.8, 0.2]]) #Node b has two edges # Yt=[0 1;1 0] Yt = np.array([[0.0, 1.0], [1.0, 0.0]]) pY_Yt = tf.matmul(pY, Yt, transpose_b=True) Yt_sum = EdgeConvNet.logitconvolve_fixed(pY, Yt, gA.NA_indegree) init = tf.global_variables_initializer() with tf.Session() as session: session.run(init) Ytt = session.run(pY_Yt) print(Ytt) Res = session.run(Yt_sum) print(Res)