def backup_table(self, table_name): client = Client("hscic") sql = "SELECT max(month) FROM {hscic}.%s" % table_name latest_date = client.query(sql).rows[0][0] latest_year_and_month = latest_date.strftime("%Y_%m") table = client.get_table(table_name) storage_client = StorageClient() bucket = storage_client.bucket() year_and_months = set() prefix_base = "backups/{}/".format(table_name) for blob in bucket.list_blobs(prefix=prefix_base): match = re.search("/(\d{4}_\d{2})/", blob.name) year_and_months.add(match.groups()[0]) if latest_year_and_month in year_and_months: print("{} table already backed up for {}".format( table_name, latest_year_and_month)) return storage_prefix = "{}/{}/{}-".format(prefix_base, latest_year_and_month, table_name) exporter = TableExporter(table, storage_prefix) exporter.export_to_storage()
def query_and_export(table_name, sql, substitutions): try: client = Client('hscic') table = client.get_table(table_name) storage_prefix = 'hscic/views/{}-'.format(table_name) logger.info("Generating view %s and saving to %s" % (table_name, storage_prefix)) logger.info("Running SQL for %s: %s" % (table_name, sql)) table.insert_rows_from_query(sql, substitutions=substitutions) exporter = TableExporter(table, storage_prefix) logger.info('Deleting existing data in storage at %s' % storage_prefix) exporter.delete_from_storage() logger.info('Exporting data to storage at %s' % storage_prefix) exporter.export_to_storage() logger.info("View generation complete for %s" % table_name) except Exception: # Log the formatted error, because the multiprocessing pool # this is called from only shows the error message (with no # traceback) logger.error(traceback.format_exc()) raise
def download_and_import(self, table): '''Download table from storage and import into local database. We sort the downloaded file with `sort` rather than in BigQuery, because we hit resource limits when we try to do so. See #698 and #711 for discussion. ''' table_id = table.table_id storage_prefix = 'hscic/views/{}-'.format(table_id) exporter = TableExporter(table, storage_prefix) raw_file = tempfile.NamedTemporaryFile() raw_path = raw_file.name sorted_file = tempfile.NamedTemporaryFile() sorted_path = sorted_file.name self.log('Downloading {} to {}'.format(table_id, raw_path)) exporter.download_from_storage_and_unzip(raw_file) self.log('Sorting {} to {}'.format(table_id, sorted_path)) cmd = 'head -1 {} > {}'.format(raw_path, sorted_path) subprocess.check_call(cmd, shell=True) field_names = sorted_file.readline().strip().split(',') cmd = generate_sort_cmd(table_id, field_names, raw_path, sorted_path) subprocess.check_call(cmd, shell=True) copy_sql = "COPY {}({}) FROM STDIN WITH (FORMAT CSV)".format( table_id, ','.join(field_names)) with connection.cursor() as cursor: with utils.constraint_and_index_reconstructor(table_id): self.log("Deleting from table %s..." % table_id) cursor.execute("DELETE FROM %s" % table_id) self.log("Copying CSV to %s..." % table_id) cursor.copy_expert(copy_sql, sorted_file) raw_file.close() sorted_file.close()
def reimport_all(self): last_imported = ImportLog.objects.latest_in_category( 'prescribing').current_at self.date = last_imported - relativedelta(years=5) client = Client('tmp_eu') while self.date <= last_imported: date_str = self.date.strftime('%Y-%m-%d') sql = ('SELECT pct AS pct_id, practice AS practice_id, ' 'bnf_code AS presentation_code, items AS total_items, ' 'net_cost, actual_cost, quantity, ' 'FORMAT_TIMESTAMP("%%Y_%%m_%%d", month) AS processing_date ' 'FROM {hscic}.normalised_prescribing_standard ' "WHERE month = '%s'" % date_str) table_name = "prescribing_%s" % date_str.replace('-', '_') table = client.get_or_create_table(table_name) table.insert_rows_from_query(sql) exporter = TableExporter(table, 'tmp/{}-*'.format(table_name)) exporter.export_to_storage() with tempfile.NamedTemporaryFile(mode='wb') as tmpfile: logger.info("Importing data for %s" % self.date) exporter.download_from_storage_and_unzip(tmpfile) with transaction.atomic(): self.drop_partition() self.create_partition() self.import_prescriptions(tmpfile.name) self.create_partition_indexes() self.add_parent_trigger() self.date += relativedelta(months=1)
def get_csv_of_empty_classes_for_level(level): """Using BigQuery, make a CSV of BNF codes at the given level (e.g. `section`, `paragraph`) that have never had any prescribing. Returns a path to the CSV """ temp_table = write_zero_prescribing_codes_table(level) storage_prefix = 'tmp/{}'.format(temp_table.table_id) exporter = TableExporter(temp_table, storage_prefix) logger.info("Copying %s to %s" % (temp_table.table_id, storage_prefix)) exporter.export_to_storage() path = "/%s/%s.csv" % (tempfile.gettempdir(), temp_table.table_id) logger.info("Downloading %s to %s" % (storage_prefix, path)) with open(path, 'w') as f: exporter.download_from_storage_and_unzip(f) return path
def handle(self, *args, **options): path = options["filename"] head, filename = os.path.split(path) converted_path = "{}_formatted.CSV".format(os.path.splitext(path)[0]) _, year_and_month = os.path.split(head) logger.info("path: %s", path) logger.info("converted_path: %s", converted_path) logger.info("year_and_month: %s", year_and_month) date = year_and_month + "_01" try: datetime.datetime.strptime(date, "%Y_%m_%d") except ValueError: message = ("The file path must have a YYYY_MM " "date component in the containing directory: ") message += path raise CommandError(message) hscic_dataset_client = Client("hscic") tmp_dataset_client = Client("tmp_eu") # Check that we haven't already processed data for this month sql = """SELECT COUNT(*) FROM {dataset}.prescribing WHERE month = TIMESTAMP('{date}')""".format( dataset=hscic_dataset_client.dataset_id, date=date.replace("_", "-")) try: results = hscic_dataset_client.query(sql) assert results.rows[0][0] == 0 except NotFound: pass # Create BQ table backed backed by uploaded source CSV file raw_data_table_name = "raw_prescribing_data_{}".format(year_and_month) gcs_path = "hscic/prescribing/{}/{}".format(year_and_month, filename) logger.info("raw_data_table_name: %s", raw_data_table_name) logger.info("gcs_path: %s", gcs_path) raw_data_table = tmp_dataset_client.create_storage_backed_table( raw_data_table_name, RAW_PRESCRIBING_SCHEMA, gcs_path) # Append aggregated data to prescribing table sql = """ SELECT Area_Team_Code AS sha, LEFT(PCO_Code, 3) AS pct, Practice_Code AS practice, BNF_Code AS bnf_code, BNF_Description AS bnf_name, SUM(Items) AS items, SUM(NIC) AS net_cost, SUM(Actual_Cost) AS actual_cost, SUM(Quantity * Items) AS quantity, TIMESTAMP('%s') AS month, FROM %s WHERE Practice_Code NOT LIKE '%%998' -- see issue #349 GROUP BY bnf_code, bnf_name, pct, practice, sha """ % ( date.replace("_", "-"), raw_data_table.qualified_name, ) logger.info("sql: %s", sql) prescribing_table = hscic_dataset_client.get_table("prescribing") prescribing_table.insert_rows_from_query( sql, legacy=True, write_disposition="WRITE_APPEND") # Write aggregated data to new table, for download sql = """ SELECT LEFT(PCO_Code, 3) AS pct_id, Practice_Code AS practice_code, BNF_Code AS presentation_code, SUM(Items) AS total_items, SUM(NIC) AS net_cost, SUM(Actual_Cost) AS actual_cost, SUM(Quantity * Items) AS quantity, '%s' AS processing_date, FROM %s WHERE Practice_Code NOT LIKE '%%998' -- see issue #349 GROUP BY presentation_code, pct_id, practice_code """ % ( date, raw_data_table.qualified_name, ) fmtd_data_table_name = "formatted_prescribing_%s" % year_and_month logger.info("sql: %s", sql) logger.info("fmtd_data_table_name: %s", fmtd_data_table_name) fmtd_data_table = tmp_dataset_client.get_table(fmtd_data_table_name) fmtd_data_table.insert_rows_from_query(sql, legacy=True) # Export new table to storage, and download exporter = TableExporter(fmtd_data_table, gcs_path + "_formatted-") exporter.export_to_storage(print_header=False) with tempfile.NamedTemporaryFile(dir=head) as f: exporter.download_from_storage_and_unzip(f) # Sort the output. # # Why? Because this is equivalent to CLUSTERing the table on # loading, but less resource-intensive than doing it in # Postgres. And the table is too big to sort within BigQuery. subprocess.call( "ionice -c 2 nice -n 10 sort -k3,3 -k1,1 -k2,2 -t, %s > %s" % (f.name, converted_path), shell=True, )
def handle(self, *args, **options): path = options['filename'] head, filename = os.path.split(path) converted_path = '{}_formatted.CSV'.format(os.path.splitext(path)[0]) _, year_and_month = os.path.split(head) logger.info('path: %s', path) logger.info('converted_path: %s', converted_path) logger.info('year_and_month: %s', year_and_month) date = year_and_month + '_01' try: datetime.datetime.strptime(date, '%Y_%m_%d') except ValueError: message = ('The file path must have a YYYY_MM ' 'date component in the containing directory: ') message += path raise CommandError(message) hscic_dataset_client = Client('hscic') tmp_dataset_client = Client('tmp_eu') # Check that we haven't already processed data for this month sql = '''SELECT COUNT(*) FROM {dataset}.prescribing WHERE month = TIMESTAMP('{date}')'''.format( dataset=hscic_dataset_client.dataset_id, date=date.replace('_', '-'), ) try: results = hscic_dataset_client.query(sql) assert results.rows[0][0] == 0 except NotFound: pass # Create BQ table backed backed by uploaded source CSV file raw_data_table_name = 'raw_prescribing_data_{}'.format(year_and_month) gcs_path = 'hscic/prescribing/{}/{}'.format(year_and_month, filename) logger.info('raw_data_table_name: %s', raw_data_table_name) logger.info('gcs_path: %s', gcs_path) schema = [ {'name': 'Regional_Office_Name', 'type': 'string'}, {'name': 'Regional_Office_Code', 'type': 'string'}, {'name': 'Area_Team_Name', 'type': 'string'}, {'name': 'Area_Team_Code', 'type': 'string', 'mode': 'required'}, {'name': 'PCO_Name', 'type': 'string'}, {'name': 'PCO_Code', 'type': 'string'}, {'name': 'Practice_Name', 'type': 'string'}, {'name': 'Practice_Code', 'type': 'string', 'mode': 'required'}, {'name': 'BNF_Code', 'type': 'string', 'mode': 'required'}, {'name': 'BNF_Description', 'type': 'string', 'mode': 'required'}, {'name': 'Items', 'type': 'integer', 'mode': 'required'}, {'name': 'Quantity', 'type': 'integer', 'mode': 'required'}, {'name': 'ADQ_Usage', 'type': 'float'}, {'name': 'NIC', 'type': 'float', 'mode': 'required'}, {'name': 'Actual_Cost', 'type': 'float', 'mode': 'required'}, ] raw_data_table = tmp_dataset_client.create_storage_backed_table( raw_data_table_name, schema, gcs_path ) # Append aggregated data to prescribing table sql = ''' SELECT Area_Team_Code AS sha, LEFT(PCO_Code, 3) AS pct, Practice_Code AS practice, BNF_Code AS bnf_code, BNF_Description AS bnf_name, SUM(Items) AS items, SUM(NIC) AS net_cost, SUM(Actual_Cost) AS actual_cost, SUM(Quantity * Items) AS quantity, TIMESTAMP('%s') AS month, FROM %s WHERE Practice_Code NOT LIKE '%%998' -- see issue #349 GROUP BY bnf_code, bnf_name, pct, practice, sha ''' % (date.replace('_', '-'), raw_data_table.qualified_name) logger.info('sql: %s', sql) prescribing_table = hscic_dataset_client.get_table('prescribing') prescribing_table.insert_rows_from_query( sql, legacy=True, write_disposition='WRITE_APPEND' ) # Write aggregated data to new table, for download sql = ''' SELECT LEFT(PCO_Code, 3) AS pct_id, Practice_Code AS practice_code, BNF_Code AS presentation_code, SUM(Items) AS total_items, SUM(NIC) AS net_cost, SUM(Actual_Cost) AS actual_cost, SUM(Quantity * Items) AS quantity, '%s' AS processing_date, FROM %s WHERE Practice_Code NOT LIKE '%%998' -- see issue #349 GROUP BY presentation_code, pct_id, practice_code ''' % (date, raw_data_table.qualified_name) fmtd_data_table_name = 'formatted_prescribing_%s' % year_and_month logger.info('sql: %s', sql) logger.info('fmtd_data_table_name: %s', fmtd_data_table_name) fmtd_data_table = tmp_dataset_client.get_table(fmtd_data_table_name) fmtd_data_table.insert_rows_from_query(sql, legacy=True) # Export new table to storage, and download exporter = TableExporter(fmtd_data_table, gcs_path + '_formatted-') exporter.export_to_storage(print_header=False) with tempfile.NamedTemporaryFile(dir=head) as f: exporter.download_from_storage_and_unzip(f) # Sort the output. # # Why? Because this is equivalent to CLUSTERing the table on # loading, but less resource-intensive than doing it in # Postgres. And the table is too big to sort within BigQuery. subprocess.call( "ionice -c 2 nice -n 10 sort -k3,3 -k1,1 -k2,2 -t, %s > %s" % ( f.name, converted_path), shell=True)
def test_the_lot(self): client = Client('test') schema = build_schema( ('a', 'INTEGER'), ('b', 'STRING'), ) headers = ['a', 'b'] rows = [ (1, 'apple'), (2, 'banana'), (3, 'coconut'), ] t1 = client.get_or_create_table('t1', schema) t1_qname = t1.qualified_name # Test Table.insert_rows_from_csv t1.insert_rows_from_csv('gcutils/tests/test_table.csv') self.assertEqual(sorted(t1.get_rows()), rows) # Test Table.insert_rows_from_query t2 = client.get_table('t2') sql = 'SELECT * FROM {} WHERE a > 1'.format(t1_qname) t2.insert_rows_from_query(sql) self.assertEqual(sorted(t2.get_rows()), rows[1:]) # Test Client.query sql = 'SELECT * FROM {} WHERE a > 2'.format(t1_qname) results = client.query(sql) self.assertEqual(sorted(results.rows), rows[2:]) # Test Client.query_into_dataframe sql = 'SELECT * FROM {} WHERE a > 2'.format(t1_qname) df = client.query_into_dataframe(sql) self.assertEqual(df.values.tolist(), [list(rows[2])]) # Test TableExporter.export_to_storage and # TableExporter.download_from_storage_and_unzip t1_exporter = TableExporter(t1, self.storage_prefix + 'test_table-') t1_exporter.export_to_storage() with tempfile.NamedTemporaryFile(mode='r+') as f: t1_exporter.download_from_storage_and_unzip(f) f.seek(0) reader = csv.reader(f) data = [reader.next()] + sorted(reader) self.assertEqual(data, [map(str, row) for row in [headers] + rows]) # Test Table.insert_rows_from_storage storage_path = self.storage_prefix + 'test_table.csv' self.upload_to_storage('gcutils/tests/test_table.csv', storage_path) t2.insert_rows_from_storage(storage_path) self.assertEqual(sorted(t2.get_rows()), rows) # Test Client.create_storage_backed_table storage_path = self.storage_prefix + 'test_table_headers.csv' self.upload_to_storage( 'gcutils/tests/test_table_headers.csv', storage_path ) schema = [ {'name': 'a', 'type': 'integer'}, {'name': 'b', 'type': 'string'}, ] t3 = client.create_storage_backed_table( 't3', schema, storage_path ) results = client.query('SELECT * FROM {}'.format(t3.qualified_name)) self.assertEqual(sorted(results.rows), rows) self.upload_to_storage( 'gcutils/tests/test_table_headers_2.csv', storage_path ) results = client.query('SELECT * FROM {}'.format(t3.qualified_name)) self.assertEqual(sorted(results.rows), rows + [(4, u'damson')]) # Test Client.create_table_with_view sql = 'SELECT * FROM {{project}}.{} WHERE a > 1'.format(t1_qname) t4 = client.create_table_with_view('t4', sql, False) results = client.query('SELECT * FROM {}'.format(t4.qualified_name)) self.assertEqual(sorted(results.rows), rows[1:]) # Test Client.insert_rows_from_pg PCT.objects.create(code='ABC', name='CCG 1') PCT.objects.create(code='XYZ', name='CCG 2') def transformer(row): return [ord(row[0][0]), row[1]] t1.insert_rows_from_pg(PCT, ['code', 'name'], transformer) self.assertEqual(sorted(t1.get_rows()), [(65, 'CCG 1'), (88, 'CCG 2')]) # Test Table.delete_all_rows t1.delete_all_rows() self.assertEqual(list(t1.get_rows()), [])
def test_the_lot(self): client = Client("test") archive_client = Client("archive") orig_schema = build_schema(("a", "STRING"), ("b", "INTEGER")) schema = build_schema(("a", "INTEGER"), ("b", "STRING")) headers = ["a", "b"] rows = [(1, "apple"), (2, "banana"), (3, "coconut")] t1 = client.get_or_create_table("t1", orig_schema) t1_qname = t1.qualified_name # Test Table.insert_rows_from_csv t1.insert_rows_from_csv("gcutils/tests/test_table.csv", schema) self.assertEqual(sorted(t1.get_rows()), rows) # Test Table.insert_rows_from_query t2 = client.get_table("t2") sql = "SELECT * FROM {} WHERE a > 1".format(t1_qname) t2.insert_rows_from_query(sql) self.assertEqual(sorted(t2.get_rows()), rows[1:]) # Test Client.query sql = "SELECT * FROM {} WHERE a > 2".format(t1_qname) results = client.query(sql) self.assertEqual(sorted(results.rows), rows[2:]) # Test Client.query_into_dataframe sql = "SELECT * FROM {} WHERE a > 2".format(t1_qname) df = client.query_into_dataframe(sql) self.assertEqual(df.values.tolist(), [list(rows[2])]) # Test TableExporter.export_to_storage and # TableExporter.download_from_storage_and_unzip t1_exporter = TableExporter(t1, self.storage_prefix + "test_table-") t1_exporter.export_to_storage() with tempfile.NamedTemporaryFile(mode="r+") as f: t1_exporter.download_from_storage_and_unzip(f) f.seek(0) reader = csv.reader(f) data = [next(reader)] + sorted(reader) self.assertEqual(data, [list(map(str, row)) for row in [headers] + rows]) # Test Table.insert_rows_from_storage storage_path = self.storage_prefix + "test_table.csv" self.upload_to_storage("gcutils/tests/test_table.csv", storage_path) t2.insert_rows_from_storage(storage_path) self.assertEqual(sorted(t2.get_rows()), rows) # Test Client.create_storage_backed_table storage_path = self.storage_prefix + "test_table_headers.csv" self.upload_to_storage("gcutils/tests/test_table_headers.csv", storage_path) schema = build_schema(("a", "INTEGER"), ("b", "STRING")) t3 = client.create_storage_backed_table("t3", schema, storage_path) results = client.query("SELECT * FROM {}".format(t3.qualified_name)) self.assertEqual(sorted(results.rows), rows) self.upload_to_storage("gcutils/tests/test_table_headers_2.csv", storage_path) results = client.query("SELECT * FROM {}".format(t3.qualified_name)) self.assertEqual(sorted(results.rows), rows + [(4, "damson")]) # Test Client.create_table_with_view sql = "SELECT * FROM {{project}}.{} WHERE a > 1".format(t1_qname) t4 = client.create_table_with_view("t4", sql, False) results = client.query("SELECT * FROM {}".format(t4.qualified_name)) self.assertEqual(sorted(results.rows), rows[1:]) # Test Table.copy_to_new_dataset t1.copy_to_new_dataset("archive") t1_archived = archive_client.get_table("t1") self.assertEqual(sorted(t1_archived.get_rows()), rows) self.assertEqual(sorted(t1.get_rows()), rows) # Test Table.move_to_new_dataset t2.move_to_new_dataset("archive") t2_archived = archive_client.get_table("t2") self.assertEqual(sorted(t2_archived.get_rows()), rows) with self.assertRaises(NotFound): list(t2.get_rows()) # Test Client.insert_rows_from_pg PCT.objects.create(code="ABC", name="CCG 1") PCT.objects.create(code="XYZ", name="CCG 2") def transformer(row): return [ord(row[0][0]), row[1]] t1.insert_rows_from_pg( PCT, build_schema(("code", "INTEGER"), ("name", "STRING")), transformer=transformer, ) self.assertEqual(sorted(t1.get_rows()), [(65, "CCG 1"), (88, "CCG 2")]) # Test Table.delete_all_rows t1.delete_all_rows() self.assertEqual(list(t1.get_rows()), [])