예제 #1
0
def test_sparameters_straight_mpi_pool(dataframe_regression):
    """Checks Sparameters for a straight waveguide using an MPI pool"""

    components = []
    for length in [2]:
        c = gf.components.straight(length=length)
        p = 3
        c = gf.add_padding_container(c, default=0, top=p, bottom=p)
        components.append(c)

    filepaths = gm.write_sparameters_meep_mpi_pool([{
        "component": c,
        "overwrite": True
    } for c in components], )

    filepath = filepaths[0]
    df = pd.read_csv(filepath)

    filepath2 = sim.get_sparameters_path_meep(component=c,
                                              layer_stack=LAYER_STACK)
    assert (filepath2 == filepaths[0]
            ), f"filepath returned {filepaths[0]} differs from {filepath2}"

    # Check reasonable reflection/transmission
    assert np.allclose(df["s12m"], 1, atol=1e-02)
    assert np.allclose(df["s21m"], 1, atol=1e-02)
    assert np.allclose(df["s11m"], 0, atol=5e-02)
    assert np.allclose(df["s22m"], 0, atol=5e-02)

    if dataframe_regression:
        dataframe_regression.check(df)
예제 #2
0
def test_sparameters_straight_symmetric(dataframe_regression):
    """Checks Sparameters for a straight waveguide"""
    c = gf.components.straight(length=2)
    p = 3
    c = gf.add_padding_container(c, default=0, top=p, bottom=p)
    # port_symmetries for straight
    port_symmetries = {
        "o1": {
            "s11": ["s22"],
            "s21": ["s12"],
        }
    }
    df = gm.write_sparameters_meep(c,
                                   overwrite=True,
                                   resolution=RESOLUTION,
                                   port_symmetries=port_symmetries)

    # Check reasonable reflection/transmission
    assert np.allclose(df["s12m"], 1, atol=1e-02), df["s12m"]
    assert np.allclose(df["s21m"], 1, atol=1e-02), df["s21m"]
    assert np.allclose(df["s11m"], 0, atol=5e-02), df["s11m"]
    assert np.allclose(df["s22m"], 0, atol=5e-02), df["s22m"]

    if dataframe_regression:
        dataframe_regression.check(df)
예제 #3
0
def test_sparameters_straight_mpi(dataframe_regression):
    """Checks Sparameters for a straight waveguide using MPI"""
    c = gf.components.straight(length=2)
    p = 3
    c = gf.add_padding_container(c, default=0, top=p, bottom=p)
    filepath = gm.write_sparameters_meep_mpi(c, overwrite=True)
    df = pd.read_csv(filepath)

    # Check reasonable reflection/transmission
    assert np.allclose(df["s12m"], 1, atol=1e-02)
    assert np.allclose(df["s21m"], 1, atol=1e-02)
    assert np.allclose(df["s11m"], 0, atol=5e-02)
    assert np.allclose(df["s22m"], 0, atol=5e-02)

    if dataframe_regression:
        dataframe_regression.check(df)
예제 #4
0
def write_sparameters_meep(
    component: Component,
    port_symmetries: Optional[PortSymmetries] = None,
    resolution: int = 20,
    wl_min: float = 1.5,
    wl_max: float = 1.6,
    wl_steps: int = 50,
    dirpath: Path = sparameters_path,
    layer_stack: LayerStack = LAYER_STACK,
    port_margin: float = 2,
    port_monitor_offset: float = -0.1,
    port_source_offset: float = -0.1,
    filepath: Optional[Path] = None,
    overwrite: bool = False,
    animate: bool = False,
    lazy_parallelism: bool = False,
    run: bool = True,
    dispersive: bool = False,
    xmargin: float = 0,
    ymargin: float = 0,
    xmargin_left: float = 0,
    xmargin_right: float = 0,
    ymargin_top: float = 0,
    ymargin_bot: float = 0,
    **settings,
) -> pd.DataFrame:
    r"""Compute Sparameters and writes them to a CSV filepath.
    Simulates each time using a different input port (by default, all of them)
    unless you specify port_symmetries:

    port_symmetries = {"o1":
            {
                "s11": ["s22","s33","s44"],
                "s21": ["s21","s34","s43"],
                "s31": ["s13","s24","s42"],
                "s41": ["s14","s23","s32"],
            }
        }
    - Only simulations using the outer key port names will be run
    - The associated value is another dict whose keys are the S-parameters computed
        when this source is active
    - The values of this inner Dict are lists of s-parameters whose values are copied

    This allows you doing less simulations

    TODO: automate this for common component types
    (geometrical symmetries, reciprocal materials, etc.)

    TODO: enable other port naming conventions, such as (in0, in1, out0, out1)


    .. code::

         top view
              ________________________________
             |                               |
             | xmargin_left                  | port_extension
             |<------>          port_margin ||<-->
          ___|___________          _________||___
             |           \        /          |
             |            \      /           |
             |             ======            |
             |            /      \           |
          ___|___________/        \__________|___
             |   |                 <-------->|
             |   |ymargin_bot   xmargin_right|
             |   |                           |
             |___|___________________________|

        side view
              ________________________________
             |                     |         |
             |                     |         |
             |                   zmargin_top |
             |ymargin              |         |
             |<---> _____         _|___      |
             |     |     |       |     |     |
             |     |     |       |     |     |
             |     |_____|       |_____|     |
             |       |                       |
             |       |                       |
             |       |zmargin_bot            |
             |       |                       |
             |_______|_______________________|



    Args:
        component: to simulate.
        resolution: in pixels/um (20: for coarse, 120: for fine)
        port_symmetries: Dict to specify port symmetries, to save number of simulations
        source_ports: list of port string names to use as sources
        dirpath: directory to store Sparameters
        layer_stack: LayerStack class
        port_margin: margin on each side of the port
        port_monitor_offset: offset between monitor Component port and monitor MEEP port
        port_source_offset: offset between source Component port and source MEEP port
        filepath: to store pandas Dataframe with Sparameters in CSV format.
            Defaults to dirpath/component_.csv
        overwrite: overwrites stored simulation results.
        animate: saves a MP4 images of the simulation for inspection, and also
            outputs during computation. The name of the file is the source index
        lazy_parallelism: toggles the flag "meep.divide_parallel_processes" to
            perform the simulations with different sources in parallel
        run: runs simulation, if False, only plots simulation
        dispersive: use dispersive models for materials (requires higher resolution)
        xmargin: left and right distance from component to PML.
        xmargin_left: west distance from component to PML.
        xmargin_right: east distance from component to PML.
        ymargin: top and bottom distance from component to PML.
        ymargin_top: north distance from component to PML.
        ymargin_bot: south distance from component to PML.

    keyword Args:
        extend_ports_length: to extend ports beyond the PML (um).
        zmargin_top: thickness for cladding above core (um).
        zmargin_bot: thickness for cladding below core (um)
        tpml: PML thickness (um).
        clad_material: material for cladding.
        is_3d: if True runs in 3D
        wl_min: wavelength min (um).
        wl_max: wavelength max (um).
        wl_steps: wavelength steps
        dfcen: delta frequency
        port_source_name: input port name
        port_field_monitor_name:
        port_margin: margin on each side of the port (um).
        distance_source_to_monitors: in (um).
        port_source_offset: offset between source Component port and source MEEP port
        port_monitor_offset: offset between monitor Component port and monitor MEEP port

    Returns:
        sparameters in a pandas Dataframe (wavelengths, s11a, s12m, ...)
            where `a` is the angle in radians and `m` the module

    """

    port_symmetries = port_symmetries or {}

    xmargin_left = xmargin_left or xmargin
    xmargin_right = xmargin_right or xmargin

    ymargin_top = ymargin_top or ymargin
    ymargin_bot = ymargin_bot or ymargin

    sim_settings = dict(
        resolution=resolution,
        port_symmetries=port_symmetries,
        wl_min=wl_min,
        wl_max=wl_max,
        wl_steps=wl_steps,
        port_margin=port_margin,
        port_monitor_offset=port_monitor_offset,
        port_source_offset=port_source_offset,
        dispersive=dispersive,
        ymargin_top=ymargin_top,
        ymargin_bot=ymargin_bot,
        xmargin_left=xmargin_left,
        xmargin_right=xmargin_right,
        **settings,
    )

    filepath = filepath or get_sparameters_path(
        component=component,
        dirpath=dirpath,
        layer_stack=layer_stack,
        **sim_settings,
    )

    sim_settings = sim_settings.copy()
    sim_settings["layer_stack"] = layer_stack.to_dict()
    sim_settings["component"] = component.to_dict()
    filepath = pathlib.Path(filepath)
    filepath_sim_settings = filepath.with_suffix(".yml")

    # filepath_sim_settings.write_text(OmegaConf.to_yaml(sim_settings))
    # logger.info(f"Write simulation settings to {filepath_sim_settings!r}")
    # return filepath_sim_settings

    component = gf.add_padding_container(
        component,
        default=0,
        top=ymargin_top,
        bottom=ymargin_bot,
        left=xmargin_left,
        right=xmargin_right,
    )

    if not run:
        sim_dict = get_simulation(
            component=component,
            wl_min=wl_min,
            wl_max=wl_max,
            wl_steps=wl_steps,
            layer_stack=layer_stack,
            port_margin=port_margin,
            port_monitor_offset=port_monitor_offset,
            port_source_offset=port_source_offset,
            **settings,
        )
        sim_dict["sim"].plot2D(plot_eps_flag=True)
        plt.show()
        return

    if filepath.exists() and not overwrite:
        logger.info(f"Simulation loaded from {filepath!r}")
        return pd.read_csv(filepath)

    # Parse ports (default)
    monitor_indices = []
    source_indices = []
    component_ref = component.ref()
    for port_name in component_ref.ports.keys():
        if component_ref.ports[port_name].port_type == "optical":
            monitor_indices.append(re.findall("[0-9]+", port_name)[0])
    if bool(port_symmetries):  # user-specified
        for port_name in port_symmetries.keys():
            source_indices.append(re.findall("[0-9]+", port_name)[0])
    else:  # otherwise cycle through all
        source_indices = monitor_indices

    # Create S-parameter storage object
    sp = {}

    @pydantic.validate_arguments
    def sparameter_calculation(
        n,
        component: Component,
        port_symmetries: Optional[PortSymmetries] = port_symmetries,
        monitor_indices: Tuple = monitor_indices,
        wl_min: float = wl_min,
        wl_max: float = wl_max,
        wl_steps: int = wl_steps,
        dirpath: Path = dirpath,
        animate: bool = animate,
        dispersive: bool = dispersive,
        **settings,
    ) -> Dict:

        sim_dict = get_simulation(
            component=component,
            port_source_name=f"o{monitor_indices[n]}",
            resolution=resolution,
            wl_min=wl_min,
            wl_max=wl_max,
            wl_steps=wl_steps,
            port_margin=port_margin,
            port_monitor_offset=port_monitor_offset,
            port_source_offset=port_source_offset,
            dispersive=dispersive,
            **settings,
        )

        sim = sim_dict["sim"]
        monitors = sim_dict["monitors"]
        # freqs = sim_dict["freqs"]
        # wavelengths = 1 / freqs
        # print(sim.resolution)

        # Make termination when field decayed enough across ALL monitors
        termination = []
        for monitor_name in monitors:
            termination.append(
                mp.stop_when_fields_decayed(
                    dt=50,
                    c=mp.Ez,
                    pt=monitors[monitor_name].regions[0].center,
                    decay_by=1e-9,
                ))

        if animate:
            sim.use_output_directory()
            animate = mp.Animate2D(
                sim,
                fields=mp.Ez,
                realtime=True,
                field_parameters={
                    "alpha": 0.8,
                    "cmap": "RdBu",
                    "interpolation": "none",
                },
                eps_parameters={"contour": True},
                normalize=True,
            )
            sim.run(mp.at_every(1, animate), until_after_sources=termination)
            animate.to_mp4(30, monitor_indices[n] + ".mp4")
        else:
            sim.run(until_after_sources=termination)
        # call this function every 50 time spes
        # look at simulation and measure Ez component
        # when field_monitor_point decays below a certain 1e-9 field threshold

        # Calculate mode overlaps
        # Get source monitor results
        component_ref = component.ref()
        source_entering, source_exiting = parse_port_eigenmode_coeff(
            monitor_indices[n], component_ref.ports, sim_dict)
        # Get coefficients
        for monitor_index in monitor_indices:
            j = monitor_indices[n]
            i = monitor_index
            if monitor_index == monitor_indices[n]:
                sii = source_exiting / source_entering
                siia = np.unwrap(np.angle(sii))
                siim = np.abs(sii)
                sp[f"s{i}{i}a"] = siia
                sp[f"s{i}{i}m"] = siim
            else:
                monitor_entering, monitor_exiting = parse_port_eigenmode_coeff(
                    monitor_index, component_ref.ports, sim_dict)
                sij = monitor_exiting / source_entering
                sija = np.unwrap(np.angle(sij))
                sijm = np.abs(sij)
                sp[f"s{i}{j}a"] = sija
                sp[f"s{i}{j}m"] = sijm
                sij = monitor_entering / source_entering
                sija = np.unwrap(np.angle(sij))
                sijm = np.abs(sij)

        if bool(port_symmetries) is True:
            for key in port_symmetries[f"o{monitor_indices[n]}"].keys():
                values = port_symmetries[f"o{monitor_indices[n]}"][key]
                for value in values:
                    sp[f"{value}m"] = sp[f"{key}m"]
                    sp[f"{value}a"] = sp[f"{key}a"]

        return sp

    # Since source is defined upon sim object instanciation, loop here
    # for port_index in monitor_indices:

    num_sims = len(port_symmetries.keys()) or len(source_indices)
    if lazy_parallelism:
        from mpi4py import MPI

        cores = min([num_sims, multiprocessing.cpu_count()])
        n = mp.divide_parallel_processes(cores)
        comm = MPI.COMM_WORLD
        size = comm.Get_size()
        rank = comm.Get_rank()

        sp = sparameter_calculation(
            n,
            component=component,
            port_symmetries=port_symmetries,
            wl_min=wl_min,
            wl_max=wl_max,
            wl_steps=wl_steps,
            animate=animate,
            monitor_indices=monitor_indices,
            **settings,
        )
        # Synchronize dicts
        if rank == 0:
            for i in range(1, size, 1):
                data = comm.recv(source=i, tag=11)
                sp.update(data)

            df = pd.DataFrame(sp)
            df["wavelengths"] = np.linspace(wl_min, wl_max, wl_steps)
            df["freqs"] = 1 / df["wavelengths"]
            df.to_csv(filepath, index=False)
            logger.info(f"Write simulation results to {filepath!r}")
            filepath_sim_settings.write_text(OmegaConf.to_yaml(sim_settings))
            logger.info(
                f"Write simulation settings to {filepath_sim_settings!r}")
            return df
        else:
            comm.send(sp, dest=0, tag=11)

    else:
        for n in tqdm(range(num_sims)):
            sp.update(
                sparameter_calculation(
                    n,
                    component=component,
                    port_symmetries=port_symmetries,
                    wl_min=wl_min,
                    wl_max=wl_max,
                    wl_steps=wl_steps,
                    animate=animate,
                    monitor_indices=monitor_indices,
                    **settings,
                ))
        df = pd.DataFrame(sp)
        df["wavelengths"] = np.linspace(wl_min, wl_max, wl_steps)
        df["freqs"] = 1 / df["wavelengths"]
        df.to_csv(filepath, index=False)

        logger.info(f"Write simulation results to {filepath!r}")
        filepath_sim_settings.write_text(OmegaConf.to_yaml(sim_settings))
        logger.info(f"Write simulation settings to {filepath_sim_settings!r}")
        return df
예제 #5
0
write_sparameters_meep_mpi_pool_lr = gf.partial(
    write_sparameters_meep_mpi_pool, ymargin_top=3, ymargin_bot=3
)

write_sparameters_meep_mpi_pool_lt = gf.partial(
    write_sparameters_meep_mpi_pool, ymargin_bot=3, xmargin_right=3
)


if __name__ == "__main__":

    # Multicore pools example
    c1 = gf.c.straight(length=5)
    p = 3
    c1 = gf.add_padding_container(c1, default=0, top=p, bottom=p)

    c2 = gf.c.straight(length=4)
    p = 3
    c2 = gf.add_padding_container(c2, default=0, top=p, bottom=p)

    c1_dict = {
        "component": c1,
        "run": True,
        "overwrite": True,
        "lazy_parallelism": True,
        "filepath": Path("c1_dict.csv"),
    }
    c2_dict = {
        "component": c2,
        "run": True,
예제 #6
0
"""
info:

- default
- changed
- full
- info (derived properties)
- child: if any

Calculated/derived properties are stored in info

"""

import gdsfactory as gf


def test_args():
    c1 = gf.c.pad((150, 150))
    assert c1.info.full.size[0] == 150


if __name__ == "__main__":
    test_args()
    # assert c1.settings.size.full[0] == 150
    c1 = gf.c.pad((150, 150))
    c2 = gf.add_padding_container(c1)
    c2.show()
    c3 = gf.add_padding_container(c2)