예제 #1
0
def multimin(AIM_M, AIM_F, NIND, NVAR, Base, MAXGEN, SUBPOP, GGAP, selectStyle,
             recombinStyle, recopt, pm, maxormin):
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    BaseV = ga.crtbase(NVAR, Base)
    """=========================开始遗传算法进化======================="""
    Chrom = ga.crtbp(NIND, BaseV)  # 创建简单离散种群
    ObjV = aimfuc(Chrom)  # 计算种群目标函数值
    NDSet = np.zeros((0, Chrom.shape[1]))  # 定义帕累托最优解集合(初始为空集)
    NDSetObjV = np.zeros((0, ObjV.shape[1]))  # 定义帕累托最优解的目标函数值记录器
    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        # 求种群的非支配个体以及基于被支配数的适应度
        [FitnV, frontIdx] = ga.ndominfast(maxormin * ObjV)
        # 更新帕累托最优集以及种群非支配个体的适应度
        [FitnV, NDSet, NDSetObjV,
         repnum] = ga.upNDSet(Chrom, maxormin * ObjV, FitnV, NDSet,
                              maxormin * NDSetObjV, frontIdx)
        # 进行遗传操作!!
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
        SelCh = ga.mut(SelCh, BaseV, pm)  # 变异
        ObjVSel = aimfuc(SelCh)  # 求育种个体的目标函数值
        # 求种群的非支配个体以及基于被支配数的适应度
        [FitnVSel, frontIdx] = ga.ndominfast(maxormin * ObjVSel)
        [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 1, FitnV, FitnVSel,
                                 ObjV, ObjVSel)  #重插入
    end_time = time.time()  # 结束计时
    # 返回进化记录器、变量记录器以及执行时间
    return [ObjV, NDSet, NDSetObjV, end_time - start_time]
예제 #2
0
파일: mintemp1.py 프로젝트: zmskye/geatpy
def mintemp1(AIM_M, AIM_F, PUN_M, PUN_F, ranges, borders, MAXGEN, NIND, SUBPOP,
             GGAP, selectStyle, recombinStyle, recopt, pm, maxormin):
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    FieldDR = ga.crtfld(ranges, borders)  # 初始化区域描述器
    NVAR = ranges.shape[1]  # 得到控制变量的个数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN, 3)) * np.nan).astype('int64')
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN, NVAR)) * np.nan).astype('int64')
    """=========================开始遗传算法进化======================="""
    Chrom = ga.crtip(NIND, FieldDR)  # 根据区域描述器FieldDR生成整数型初始种群
    LegV = np.ones((NIND, 1))  # 生成可行性列向量,元素为1表示对应个体是可行解,0表示非可行解
    [ObjV, LegV] = aimfuc(Chrom, LegV)  # 计算种群目标函数值,同时更新LegV
    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        FitnV = ga.ranking(maxormin * ObjV, LegV)  # 计算种群适应度
        FitnV = punishing(LegV, FitnV)  # 调用罚函数
        # 记录进化过程
        bestIdx = np.argmax(FitnV)
        if LegV[bestIdx] != 0:
            feasible = np.where(LegV != 0)[0]  # 排除非可行解
            # 记录当代种群的适应度均值
            pop_trace[gen,
                      1] = np.sum(FitnV[feasible]) / FitnV[feasible].shape[0]
            # 记录当代种群最优个体的目标函数值
            pop_trace[gen, 0] = ObjV[bestIdx]
            # 记录当代种群的最优个体的适应度值
            pop_trace[gen, 2] = FitnV[bestIdx]
            # 记录当代种群最优个体的变量值
            var_trace[gen, :] = Chrom[bestIdx, :]
        # 进行遗传操作!!
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
        SelCh = ga.mutint(SelCh, FieldDR, pm)  # 实值变异
        LegVSel = np.ones((SelCh.shape[0], 1))  # 创建育种个体的可行性列向量
        [ObjVSel, LegVSel] = aimfuc(SelCh, LegVSel)  # 求育种个体的目标函数值
        FitnVSel = punishing(LegVSel, FitnV)  # 调用罚函数
        [Chrom, ObjV,
         LegV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 1, FitnV, FitnVSel, ObjV,
                          ObjVSel, LegV, LegVSel)  #重插入
    end_time = time.time()  # 结束计时
    # 后处理进化记录器
    delIdx = np.where(np.isnan(pop_trace))[0]
    pop_trace = np.delete(pop_trace, delIdx, 0)
    var_trace = np.delete(var_trace, delIdx, 0)
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, end_time - start_time]
예제 #3
0
def i_awGA(AIM_M, AIM_F, NIND, ranges, borders, precisions, MAXGEN, SUBPOP,
           GGAP, selectStyle, recombinStyle, recopt, pm, maxormin):
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    FieldDR = ga.crtfld(ranges, borders, precisions)
    """=========================开始遗传算法进化======================="""
    Chrom = ga.crtrp(NIND, FieldDR)  # 创建简单离散种群
    ObjV = aimfuc(Chrom)  # 计算种群目标函数值
    NDSet = np.zeros((0, ObjV.shape[1]))  # 定义帕累托最优解集合(初始为空集)
    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        if NDSet.shape[0] > 2 * ObjV.shape[0]:
            break
        [CombinObjV, weight] = ga.awGA(ObjV)  # 适应性权重法求聚合目标函数值
        FitnV = ga.ranking(maxormin * CombinObjV)  # 根据加权单目标计算适应度
        [FitnV, frontIdx] = ga.ndominfast(maxormin * ObjV,
                                          FitnV)  # 求种群的非支配个体,并更新适应度

        # 更新帕累托最优集以及种群非支配个体的适应度
        [FitnV, NDSet, repnum] = ga.upNDSet(FitnV, maxormin * ObjV,
                                            maxormin * NDSet, frontIdx)

        # 进行遗传操作!!
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
        SelCh = ga.mutbga(SelCh, FieldDR, pm)  # 变异
        if repnum > Chrom.shape[0] * 0.1:  # 进行一次高斯变异
            SelCh = ga.mutgau(SelCh, FieldDR, pm)  # 高斯变异
        ObjVSel = aimfuc(SelCh)  # 求育种个体的目标函数值
        [CombinObjV, weight] = ga.awGA(maxormin * ObjVSel)  # 适应性权重法求聚合目标函数值
        FitnVSel = ga.ranking(maxormin * CombinObjV)  # 根据聚合目标求育种个体适应度
        [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 0.9, FitnV, FitnVSel,
                                 ObjV, ObjVSel)  #重插入

    end_time = time.time()  # 结束计时
    # 返回帕累托最优集以及执行时间
    return [ObjV, NDSet, end_time - start_time]
예제 #4
0
def q_sorted(AIM_M, AIM_F, NIND, ranges, borders, precisions, MAXGEN, SUBPOP,
             GGAP, selectStyle, recombinStyle, recopt, pm, maxormin):
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    FieldDR = ga.crtfld(ranges, borders, precisions)
    """=========================开始遗传算法进化======================="""
    Chrom = ga.crtrp(NIND, FieldDR)  # 创建简单离散种群
    ObjV = aimfuc(Chrom)  # 计算种群目标函数值
    NDSet = np.zeros((0, ObjV.shape[1]))  # 定义帕累托最优解集合(初始为空集)
    start_time = time.time()  # 开始计时
    ax = None
    # 开始进化!!
    for gen in range(MAXGEN):
        #        if NDSet.shape[0] > ObjV.shape[0]:
        #            break
        # 求种群的非支配个体以及基于被支配数的适应度
        [FitnV, frontIdx] = ga.ndominfast(maxormin * ObjV)

        # 更新帕累托最优集以及种群非支配个体的适应度
        [FitnV, NDSet, repnum] = ga.upNDSet(FitnV, maxormin * ObjV,
                                            maxormin * NDSet, frontIdx)

        # 进行遗传操作!!
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
        SelCh = ga.mutbga(SelCh, FieldDR, pm)  # 变异
        if repnum > Chrom.shape[0] * 0.1:  # 进行一次高斯变异
            SelCh = ga.mutgau(SelCh, FieldDR, pm)  # 高斯变异
        ObjVSel = aimfuc(SelCh)  # 求育种个体的目标函数值
        # 求种群的非支配个体以及基于被支配数的适应度
        [FitnVSel, frontIdx] = ga.ndominfast(maxormin * ObjVSel)
        [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 0.9, FitnV, FitnVSel,
                                 ObjV, ObjVSel)  #重插入
        ax = ga.frontplot(NDSet, False, ax, gen + 1)
    end_time = time.time()  # 结束计时

    # 返回帕累托最优集以及执行时间
    return [ObjV, NDSet, end_time - start_time]
예제 #5
0
def mintemp1(AIM_M, AIM_F, PUN_M, PUN_F, ranges, borders, MAXGEN, NIND, SUBPOP,
             GGAP, selectStyle, recombinStyle, recopt, pm, maxormin):
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    FieldDR = ga.crtfld(ranges, borders)  # 初始化区域描述器
    NVAR = ranges.shape[1]  # 得到控制变量的个数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN, 3)) * np.nan).astype('int64')
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN, NVAR)) * np.nan).astype('int64')
    """=========================开始遗传算法进化======================="""
    Chrom = ga.crtip(NIND, FieldDR)  # 根据区域描述器FieldDR生成整数型初始种群
    ObjV = aimfuc(Chrom)  # 计算种群目标函数值
    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        FitnV = ga.ranking(maxormin * ObjV)  # 计算种群适应度
        FitnV = punishing(Chrom, FitnV)  # 调用罚函数
        # 记录当代种群最优个体的目标函数值
        pop_trace[gen, 0] = ObjV[np.argmax(FitnV)]
        # 记录当代种群的适应度均值
        pop_trace[gen, 1] = np.sum(FitnV) / FitnV.shape[0]
        # 记录当代种群的最优个体的适应度值
        pop_trace[gen, 2] = np.max(FitnV)
        # 记录当代种群最优个体的变量值
        var_trace[gen, :] = Chrom[np.argmax(FitnV), :]
        # 进行遗传操作!!
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
        SelCh = ga.mutint(SelCh, FieldDR, pm)  # 实值变异
        ObjVSel = aimfuc(SelCh)  # 求育种个体的目标函数值
        [Chrom,ObjV] = ga.reins(Chrom,SelCh,SUBPOP,2,1,maxormin*ObjV,\
        maxormin*ObjVSel) #重插入
    end_time = time.time()  # 结束计时
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, end_time - start_time]
예제 #6
0
def sga_code_templet(AIM_M,
                     AIM_F,
                     PUN_M,
                     PUN_F,
                     FieldD,
                     problem,
                     maxormin,
                     MAXGEN,
                     NIND,
                     SUBPOP,
                     GGAP,
                     selectStyle,
                     recombinStyle,
                     recopt,
                     pm,
                     distribute,
                     drawing=1):
    """
sga_code_templet.py - 单目标编程模板(二进制/格雷编码)

语法:
    该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    sga_code_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)

输入参数:
    AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到
            目标函数规范定义:[f,LegV] = aimfuc(Phen,LegV)
            其中Phen是种群的表现型矩阵, LegV为种群的可行性列向量,f为种群的目标函数值矩阵
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到
            罚函数规范定义: newFitnV = punishing(LegV, FitnV)
            其中LegV为种群的可行性列向量, FitnV为种群个体适应度列向量
            一般在罚函数中对LegV为0的个体进行适应度惩罚,返回修改后的适应度列向量newFitnV
    
    PUN_F : str - 罚函数名
    
    FieldD : array  - 二进制/格雷码种群区域描述器,
        描述种群每个个体的染色体长度和如何解码的矩阵,它有以下结构:
                    
        [lens;		(int) 每个控制变量编码后在染色体中所占的长度
         lb;		(float) 指明每个变量使用的下界
         ub;		(float) 指明每个变量使用的上界
         codes;	(0:binary     | 1:gray) 指明子串是怎么编码的,
                                          0为标准二进制编码,1为各类编码
         scales;  (0: rithmetic | 1:logarithmic) 指明每个子串是否使用对数或算术刻度, 
                                                 1为使用对数刻度,2为使用算术刻度
         lbin;		(0:excluded   | 1:included)
         ubin]		(0:excluded   | 1:included)
                
        lbin和ubin指明范围中是否包含每个边界。
        选择lbin=0或ubin=0,表示范围中不包含相应边界。
        选择lbin=1或ubin=1,表示范围中包含相应边界。
    
    problem : str - 表明是整数问题还是实数问题,'I'表示是整数问题,'R'表示是实数问题                 
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    distribute : bool - 是否增强种群的分布性(可能会造成收敛慢)
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1

输出参数:
    pop_trace : array - 种群进化记录器(进化追踪器),
                        第0列记录着各代种群最优个体的目标函数值
                        第1列记录着各代种群的适应度均值
                        第2列记录着各代种群最优个体的适应度值
    
    var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量
    
    times     : float - 进化所用时间

模板使用注意:
    1.本模板调用的目标函数形如:[ObjV,LegV] = aimfuc(Phen,LegV), 
      其中Phen表示种群的表现型矩阵, LegV为种群的可行性列向量(详见Geatpy数据结构)
    2.本模板调用的罚函数形如: newFitnV = punishing(LegV, FitnV), 
      其中FitnV为用其他算法求得的适应度
    若不符合上述规范,则请修改算法模板或自定义新算法模板
    3.关于'maxormin': geatpy的内核函数全是遵循“最小化目标”的约定的,即目标函数值越小越好。
      当需要优化最大化的目标时,需要设置'maxormin'为-1。
      本算法模板是正确使用'maxormin'的典型范例,其具体用法如下:
      当调用的函数传入参数包含与“目标函数值矩阵”有关的参数(如ObjV,ObjVSel,NDSetObjV等)时,
      查看该函数的参考资料(可用'help'命令查看,也可到官网上查看相应的教程),
      里面若要求传入前对参数乘上'maxormin',则需要乘上。
      里面若要求对返回参数乘上'maxormin'进行还原,
      则调用函数返回得到的相应参数需要乘上'maxormin'进行还原,否则其正负号就会被改变。

"""

    #==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    NVAR = FieldD.shape[1]  # 得到控制变量的个数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN, 2)) * np.nan)
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN, NVAR)) * np.nan)
    ax = None  # 存储上一帧图形
    """=========================开始遗传算法进化======================="""
    Lind = np.sum(FieldD[0, :])  # 种群染色体长度
    Chrom = ga.crtbp(NIND, Lind)  # 生成初始种群
    if problem == 'R':
        variable = ga.bs2rv(Chrom, FieldD)  # 解码
    elif problem == 'I':
        if np.any(FieldD >= sys.maxsize):
            variable = ga.bs2int(Chrom, FieldD).astype('object')  # 解码
        else:
            variable = ga.bs2int(Chrom, FieldD).astype('int64')  # 解码
    LegV = np.ones((NIND, 1))  # 生成可行性列向量,元素为1表示对应个体是可行解,0表示非可行解
    [ObjV, LegV] = aimfuc(variable, LegV)  # 求种群的目标函数值
    gen = 0
    badCounter = 0  # 用于记录在“遗忘策略下”被忽略的代数
    # 开始进化!!
    start_time = time.time()  # 开始计时
    while gen < MAXGEN:
        if badCounter >= 10 * MAXGEN:  # 若多花了10倍的迭代次数仍没有可行解出现,则跳出
            break
        FitnV = ga.ranking(maxormin * ObjV, LegV, None, SUBPOP)
        if PUN_F is not None:
            FitnV = punishing(LegV, FitnV)  # 调用罚函数
        # 记录进化过程
        bestIdx = np.argmax(FitnV)  # 获取最优个体的下标
        if LegV[bestIdx] != 0:
            feasible = np.where(LegV != 0)[0]  # 排除非可行解
            pop_trace[gen, 0] = np.sum(
                ObjV[feasible]) / ObjV[feasible].shape[0]  # 记录种群个体平均目标函数值
            pop_trace[gen, 1] = ObjV[bestIdx]  # 记录当代目标函数的最优值
            var_trace[gen, :] = variable[bestIdx, :]  # 记录当代最优的控制变量值
            # 绘制动态图
            if drawing == 2:
                ax = ga.sgaplot(pop_trace[:, [1]], '种群最优个体目标函数值', False, ax,
                                gen)
            badCounter = 0  # badCounter计数器清零
        else:
            gen -= 1  # 忽略这一代(遗忘策略)
            badCounter += 1
        if distribute == True:  # 若要增强种群的分布性(可能会造成收敛慢)
            idx = np.argsort(ObjV[:, 0], 0)
            dis = np.diff(ObjV[idx, 0]) / (np.max(ObjV[idx, 0]) - np.min(
                ObjV[idx, 0]) + 1)  # 差分计算距离的修正偏移量
            dis = np.hstack([dis, dis[-1]])
            dis = dis + np.min(dis)  # 修正偏移量+最小量=修正绝对量
            FitnV[idx, 0] *= np.exp(dis)  # 根据相邻距离修改适应度,突出相邻距离大的个体,以增加种群的多样性
        # 进行遗传算子
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  # 对所选个体进行重组
        SelCh = ga.mutbin(SelCh, pm)  # 变异
        # 计算种群适应度
        if problem == 'R':
            variable = ga.bs2rv(SelCh, FieldD)  # 解码
        elif problem == 'I':
            if np.any(FieldD >= sys.maxsize):
                variable = ga.bs2int(SelCh, FieldD).astype('object')  # 解码
            else:
                variable = ga.bs2int(SelCh, FieldD).astype('int64')
        LegVSel = np.ones((SelCh.shape[0], 1))  # 初始化育种种群的可行性列向量
        [ObjVSel, LegVSel] = aimfuc(variable, LegVSel)  # 求后代的目标函数值
        FitnVSel = ga.ranking(maxormin * ObjVSel, LegVSel, None,
                              SUBPOP)  # 计算育种种群的适应度
        if PUN_F is not None:
            FitnVSel = punishing(LegVSel, FitnVSel)  # 调用罚函数
        # 重插入
        [Chrom, ObjV, LegV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 1, FitnV,
                                       FitnVSel, ObjV, ObjVSel, LegV, LegVSel)
        # 计算新一代种群的控制变量解码值
        if problem == 'R':
            variable = ga.bs2rv(Chrom, FieldD)  # 解码
        elif problem == 'I':
            if np.any(FieldD >= sys.maxsize):
                variable = ga.bs2int(Chrom, FieldD).astype('object')  # 解码
            else:
                variable = ga.bs2int(Chrom, FieldD).astype('int64')
        gen += 1
    end_time = time.time()  # 结束计时
    times = end_time - start_time
    # 后处理进化记录器
    delIdx = np.where(np.isnan(pop_trace))[0]
    pop_trace = np.delete(pop_trace, delIdx, 0)
    var_trace = np.delete(var_trace, delIdx, 0)
    if pop_trace.shape[0] == 0:
        raise RuntimeError('error: no feasible solution. (有效进化代数为0,没找到可行解。)')
    # 绘图
    if drawing != 0:
        ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']])
    # 输出结果
    if maxormin == 1:
        best_gen = np.argmin(pop_trace[:, 1])  # 记录最优种群是在哪一代
        best_ObjV = np.min(pop_trace[:, 1])
    elif maxormin == -1:
        best_gen = np.argmax(pop_trace[:, 1])  # 记录最优种群是在哪一代
        best_ObjV = np.max(pop_trace[:, 1])
    print('最优的目标函数值为:%s' % (best_ObjV))
    print('最优的控制变量值为:')
    for i in range(NVAR):
        print(var_trace[best_gen, i])
    print('有效进化代数:%s' % (pop_trace.shape[0]))
    print('最优的一代是第 %s 代' % (best_gen + 1))
    print('时间已过 %s 秒' % (times))
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, times]
예제 #7
0
def moea_q_sorted_templet(AIM_M, AIM_F, PUN_M, PUN_F, FieldDR, problem, maxormin, MAXGEN, MAXSIZE, NIND, SUBPOP, GGAP, selectStyle, recombinStyle, recopt, pm, distribute, drawing = 1):
    
    """
moea_q_sorted_templet.py - 基于快速非支配排序法求解多目标优化问题的进化算法模板

语法:
    该函数除参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    moea_q_sorted_templet(AIM_M, 'aimfuc', None, None, ..., maxormin,...)

输入参数:
    AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到
            目标函数规范定义:[f,LegV] = aimfuc(Phen,LegV)
            其中Phen是种群的表现型矩阵, LegV为种群的可行性列向量,f为种群的目标函数值矩阵
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到
            罚函数规范定义: newFitnV = punishing(LegV, FitnV)
            其中LegV为种群的可行性列向量, FitnV为种群个体适应度列向量
            一般在罚函数中对LegV为0的个体进行适应度惩罚,返回修改后的适应度列向量newFitnV
    
    PUN_F : str - 罚函数名
    
    FieldDR : array - 实际值种群区域描述器
        [lb;		(float) 指明每个变量使用的下界
         ub]		(float) 指明每个变量使用的上界
         注:不需要考虑是否包含变量的边界值。在crtfld中已经将是否包含边界值进行了处理
         本函数生成的矩阵的元素值在FieldDR的[下界, 上界)之间
    
    problem : str - 表明是整数问题还是实数问题,'I'表示是整数问题,'R'表示是实数问题
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    MAXSIZE : int - 帕累托最优集最大规模,当设为np.inf(无穷)时,模板不对帕累托最优解集规模作限制
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    distribute : bool - 是否增强帕累托前沿的分布性(可能会造成收敛慢或帕累托前沿数目减少)
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图,2表示绘制进化过程的动画。
                    默认drawing为1
算法描述:
    本模板维护一个全局帕累托最优集来实现帕累托前沿的搜索
    利用快速非支配排序寻找每一代种群的非支配个体,并用它来不断更新全局帕累托最优集,
    故并不需要保证种群所有个体都是非支配的

模板使用注意:
    1.本模板调用的目标函数形如:[ObjV,LegV] = aimfuc(Phen,LegV), 
      其中Phen表示种群的表现型矩阵, LegV为种群的可行性列向量(详见Geatpy数据结构)
    2.本模板调用的罚函数形如: newFitnV = punishing(LegV, FitnV), 
      其中FitnV为用其他算法求得的适应度
    若不符合上述规范,则请修改算法模板或自定义新算法模板
    3.关于'maxormin': geatpy的内核函数全是遵循“最小化目标”的约定的,即目标函数值越小越好。
      当需要优化最大化的目标时,需要设置'maxormin'为-1。
      本算法模板是正确使用'maxormin'的典型范例,其具体用法如下:
      当调用的函数传入参数包含与“目标函数值矩阵”有关的参数(如ObjV,ObjVSel,NDSetObjV等)时,
      查看该函数的参考资料(可用'help'命令查看,也可到官网上查看相应的教程),
      里面若要求传入前对参数乘上'maxormin',则需要乘上。
      里面若要求对返回参数乘上'maxormin'进行还原,
      则调用函数返回得到的相应参数需要乘上'maxormin'进行还原,否则其正负号就会被改变。
    
"""
    
    #==========================初始化配置===========================
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F) # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F) # 获得罚函数
    #=========================开始遗传算法进化=======================
    if problem == 'R':
        Chrom = ga.crtrp(NIND, FieldDR) # 生成实数值种群
    elif problem == 'I':
        Chrom = ga.crtip(NIND, FieldDR) # 生成整数值种群
    LegV = np.ones((NIND, 1)) # 初始化种群的可行性列向量
    [ObjV, LegV] = aimfuc(Chrom, LegV) # 计算种群目标函数值
    NDSet = np.zeros((0, Chrom.shape[1])) # 定义帕累托最优解记录器
    NDSetObjV = np.zeros((0, ObjV.shape[1])) # 定义帕累托最优解的目标函数值记录器
    ax = None # 存储上一帧动画
    start_time = time.time() # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        # 求种群的非支配个体以及基于被支配数的适应度
        [FitnV, frontIdx] = ga.ndominfast(maxormin * ObjV, LegV)
        if PUN_F is not None:
            FitnV = punishing(LegV, FitnV) # 调用罚函数作进一步的惩罚
        # 更新帕累托最优集以及种群非支配个体的适应度
        [FitnV, NDSet, NDSetObjV, repnum] = ga.upNDSet(Chrom, maxormin * ObjV, FitnV, NDSet, maxormin * NDSetObjV, frontIdx, LegV)
        NDSetObjV *= maxormin # 还原在传入upNDSet函数前被最小化处理过的NDSetObjV
        [NDSet, NDSetObjV] = ga.redisNDSet(NDSet, NDSetObjV, NDSetObjV.shape[1] * MAXSIZE) # 利用拥挤距离选择帕累托前沿的子集,在进化过程中最好比上限多筛选出几倍的点集
        if distribute == True: # 若要增强种群的分布性(可能会导致帕累托前沿搜索效率降低)
            # 计算每个目标下相邻个体的距离(不需要严格计算欧氏距离)
            for i in range(ObjV.shape[1]):
                idx = np.argsort(ObjV[:, i], 0)
                dis = np.diff(ObjV[idx, i]) / (np.max(ObjV[idx, i]) - np.min(ObjV[idx, i]) + 1) # 差分计算距离的偏移量占比,即偏移量除以目标函数的极差。加1是为了避免极差为0
                dis = np.hstack([dis, dis[-1]])
                FitnV[idx, 0] *= np.exp(dis) # 根据相邻距离修改适应度,突出相邻距离大的个体,以增加种群的多样性
        # 进行遗传操作!!
        SelCh=ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP) # 选择
        SelCh=ga.recombin(recombinStyle, SelCh, recopt, SUBPOP) #交叉
        if problem == 'R':
            SelCh=ga.mutbga(SelCh,FieldDR, pm) # 变异
            if repnum > Chrom.shape[0] * 0.01: # 当最优个体重复率高达1%时,进行一次高斯变异
                SelCh=ga.mutgau(SelCh, FieldDR, pm) # 高斯变异
        elif problem == 'I':
            SelCh=ga.mutint(SelCh, FieldDR, pm)
        LegVSel = np.ones((SelCh.shape[0], 1)) # 初始化育种种群的可行性列向量
        [ObjVSel, LegVSel] = aimfuc(SelCh, LegVSel) # 求育种个体的目标函数值
        # 求种群的非支配个体以及基于被支配数的适应度
        [FitnVSel, frontIdx] = ga.ndominfast(maxormin * ObjVSel, LegVSel)
        if PUN_F is not None:
            FitnVSel = punishing(LegVSel, FitnVSel) # 调用罚函数作进一步的惩罚
        [Chrom,ObjV,LegV] = ga.reins(Chrom,SelCh,SUBPOP,1,0.9,FitnV,FitnVSel,ObjV,ObjVSel,LegV,LegVSel) #重插入
        if drawing == 2:
            ax = ga.frontplot(NDSetObjV, False, ax, gen + 1) # 绘制动态图
    end_time = time.time() # 结束计时
    [NDSet, NDSetObjV] = ga.redisNDSet(NDSet, NDSetObjV, MAXSIZE) # 最后根据拥挤距离选择均匀分布的点
    #=========================绘图及输出结果=========================
    if drawing != 0:
        ga.frontplot(NDSetObjV,True)
    times = end_time - start_time
    print('用时:%s 秒'%(times))
    print('帕累托前沿点个数:%s 个'%(NDSet.shape[0]))
    print('单位时间找到帕累托前沿点个数:%s 个'%(int(NDSet.shape[0] // times)))
    # 返回帕累托最优集以及执行时间
    return [ObjV, NDSet, NDSetObjV, end_time - start_time]
예제 #8
0
Phen = ga.bs2rv(Chrom, FieldD)  #对初始种群进行解码
ObjV = aimfuc(Phen)  # 计算初始种群个体的目标函数值
# 定义进化记录器,初始值为nan
pop_trace = (np.zeros((MAXGEN, 2)) * np.nan)
# 定义种群最优个体记录器,记录每一代最优个体的染色体,初始值为nan
ind_trace = (np.zeros((MAXGEN, Lind)) * np.nan)
# 开始进化!!
start_time = time.time()  # 开始计时
for gen in range(MAXGEN):
    FitnV = ga.ranking(ObjV)  # 根据目标函数大小分配适应度值
    SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
    SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
    SelCh = ga.mutbin(SelCh, pm)  # 二进制种群变异
    Phen = ga.bs2rv(SelCh, FieldD)  # 对育种种群进行解码(二进制转十进制)
    ObjVSel = aimfuc(Phen)  # 求育种个体的目标函数值
    [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 2, 1, ObjV,
                             ObjVSel)  # 重插入得到新一代种群
    # 记录
    best_ind = np.argmin(ObjV)  # 计算当代最优个体的序号
    pop_trace[gen, 0] = ObjV[best_ind]  # 记录当代种群最优个体目标函数值
    pop_trace[gen, 1] = np.sum(ObjV) / ObjV.shape[0]  # 记录当代种群的目标函数均值
    ind_trace[gen, :] = Chrom[best_ind, :]  # 记录当代种群最优个体的变量值
# 进化完成
end_time = time.time()  # 结束计时
"""============================绘图================================"""
ga.trcplot(pop_trace, [['最优个体目标函数值', '种群的目标函数均值']], ['demo_result'])
"""============================输出结果============================"""
best_gen = np.argmin(pop_trace[:, 0])  # 计算最优种群是在哪一代
print('最优的目标函数值为:', np.min(pop_trace[:, 0]))
print('最优的控制变量值为:')
# 最优个体记录器存储的是各代种群最优个体的染色体,此处需要解码得到对应的基因表现型
variables = ga.bs2rv(ind_trace, FieldD)  # 解码
예제 #9
0
    # 整理初始数据
    food_info_table = get_food_info_table(input_data)
    # 种群规模,
    pop_size = 60
    # 最大迭代次数
    gen_max = 100
    # 维度,即商品种类
    M = len(food_info_table)
    # 初始种群
    chrom = ga.crtbp(pop_size, M)

    gen = 0
    while gen < gen_max:
        # FitnV用来存储适应度值
        FitnV = []
        for individual in chrom:
            FitnV.append(
                fitness_cal(food_info_table, get_promotion(input_data),
                            get_balance(input_data), individual))
        # temp用来存储参与交叉编译的个体
        temp = []
        # 选出每代种群中最优秀的五个进行交叉变异
        for i in ga.tour(np.array(FitnV).reshape(pop_size, 1), 5):
            temp.append(chrom[i])
            # xovdp 是交叉编译函数,其第二个参数是交叉概率
        temp = ga.xovdp(np.array(temp), 1)
        new_chrom = ga.reins(chrom, temp, 1, 1, 1,
                             np.array(FitnV).reshape(pop_size, 1))
        gen += 1
    print(max(FitnV))
예제 #10
0
# 定义进化记录器,初始值为nan
pop_trace = (np.zeros((MAXGEN, 2)) * np.nan)
# 定义种群最优个体记录器,记录每一代最优个体的染色体,初始值为nan
ind_trace = (np.zeros((MAXGEN, Lind)) * np.nan)
# 开始进化!!
start_time = time.time()  # 开始计时
for gen in range(MAXGEN):
    FitnV = ga.ranking(maxormin * ObjV, LegV)  # 根据目标函数大小分配适应度值
    SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
    SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
    SelCh = ga.mutbin(SelCh, pm)  # 二进制种群变异
    Phen = ga.bs2rv(SelCh, FieldD)  # 对育种种群进行解码(二进制转十进制)
    LegVSel = np.ones((SelCh.shape[0], 1))  # 初始化育种种群的可行性列向量
    [ObjVSel, LegVSel] = aimfuc(Phen, LegVSel)  # 求育种个体的目标函数值
    [Chrom, ObjV, LegV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 1, maxormin * ObjV,
                                   maxormin * ObjVSel, ObjV, ObjVSel, LegV,
                                   LegVSel)  # 重插入得到新一代种群
    # 记录
    pop_trace[gen, 1] = np.sum(ObjV) / ObjV.shape[0]  # 记录当代种群的目标函数均值
    if maxormin == 1:
        best_ind = np.argmin(ObjV)  # 计算当代最优个体的序号
    elif maxormin == -1:
        best_ind = np.argmax(ObjV)
    pop_trace[gen, 0] = ObjV[best_ind]  # 记录当代种群最优个体目标函数值
    ind_trace[gen, :] = Chrom[best_ind, :]  # 记录当代种群最优个体的变量值
# 进化完成
end_time = time.time()  # 结束计时
"""============================绘图================================"""
ga.trcplot(pop_trace, [['最优个体目标函数值', '种群的目标函数均值']], ['demo_result'])
"""============================输出结果============================"""
best_gen = np.argmin(pop_trace[:, 0])  # 计算最优种群是在哪一代
예제 #11
0
def q_sorted_templet(AIM_M,
                     AIM_F,
                     PUN_M,
                     PUN_F,
                     FieldDR,
                     problem,
                     maxormin,
                     MAXGEN,
                     MAXSIZE,
                     NIND,
                     SUBPOP,
                     GGAP,
                     selectStyle,
                     recombinStyle,
                     recopt,
                     pm,
                     distribute,
                     drawing=1):
    """
q_sorted_templet.py - 基于快速非支配排序法求解多目标优化问题的进化算法模板

语法:
    该函数除参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    q_sorted_templet(AIM_M, 'aimfuc', None, None, ..., maxormin,...)

输入参数:
    AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到
            目标函数规范定义:f = aimfuc(Phen)
            其中Phen是种群的表现型矩阵
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到
            罚函数规范定义: f = punishing(Phen, FitnV)
            其中Phen是种群的表现型矩阵, FitnV为种群个体适应度列向量
    
    PUN_F : str - 罚函数名
    
    FieldDR : array - 实际值种群区域描述器
        [lb;		(float) 指明每个变量使用的下界
         ub]		(float) 指明每个变量使用的上界
         注:不需要考虑是否包含变量的边界值。在crtfld中已经将是否包含边界值进行了处理
         本函数生成的矩阵的元素值在FieldDR的[下界, 上界)之间
    
    problem : str - 表明是整数问题还是实数问题,'I'表示是整数问题,'R'表示是实数问题
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    MAXSIZE : int - 帕累托最优集最大规模
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    distribute : bool - 是否增强帕累托前沿的分布性(可能会造成收敛慢或帕累托前沿数目减少)
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图,2表示绘制进化过程的动画。
                    默认drawing为1
算法描述:
    本模板维护一个全局帕累托最优集来实现帕累托前沿的搜索
    利用快速非支配排序寻找每一代种群的非支配个体,并用它来不断更新全局帕累托最优集,
    故并不需要保证种群所有个体都是非支配的
    
"""

    #==========================初始化配置===========================
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    #=========================开始遗传算法进化=======================
    if problem == 'R':
        Chrom = ga.crtrp(NIND, FieldDR)  # 生成实数值种群
    elif problem == 'I':
        Chrom = ga.crtip(NIND, FieldDR)  # 生成整数值种群
    ObjV = aimfuc(Chrom)  # 计算种群目标函数值
    NDSet = np.zeros((0, Chrom.shape[1]))  # 定义帕累托最优解记录器
    NDSetObjV = np.zeros((0, ObjV.shape[1]))  # 定义帕累托最优解的目标函数值记录器
    ax = None
    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        if NDSet.shape[0] > MAXSIZE:
            break
        # 求种群的非支配个体以及基于被支配数的适应度
        [FitnV, frontIdx] = ga.ndominfast(maxormin * ObjV)
        if PUN_F is not None:
            FitnV = punishing(Chrom, FitnV)  # 调用罚函数
        # 更新帕累托最优集以及种群非支配个体的适应度
        [FitnV, NDSet, NDSetObjV,
         repnum] = ga.upNDSet(Chrom, maxormin * ObjV, FitnV, NDSet,
                              maxormin * NDSetObjV, frontIdx)
        if distribute == True:  # 若要增强帕累托解集的分布性
            # 计算每个目标下个体的聚集距离(不需要严格计算欧氏距离,计算绝对值即可)
            for i in range(ObjV.shape[1]):
                idx = np.argsort(ObjV[:, i], 0)
                dis = np.abs(np.diff(ObjV[idx, i].T, 1).T) / (
                    np.max(ObjV[idx, i]) - np.min(ObjV[idx, i]) + 1)  # 差分计算距离
                dis = np.hstack([dis, dis[-1]])
                dis = dis + np.min(dis)
                FitnV[idx, 0] *= np.exp(dis)  # 根据聚集距离修改适应度,以增加种群的多样性
        # 进行遗传操作!!
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
        if problem == 'R':
            SelCh = ga.mutbga(SelCh, FieldDR, pm)  # 变异
            if repnum > Chrom.shape[0] * 0.01:  # 当最优个体重复率高达1%时,进行一次高斯变异
                SelCh = ga.mutgau(SelCh, FieldDR, pm)  # 高斯变异
        elif problem == 'I':
            SelCh = ga.mutint(SelCh, FieldDR, pm)
        ObjVSel = aimfuc(SelCh)  # 求育种个体的目标函数值
        # 求种群的非支配个体以及基于被支配数的适应度
        [FitnVSel, frontIdx] = ga.ndominfast(maxormin * ObjVSel)
        [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 0.9, FitnV, FitnVSel,
                                 ObjV, ObjVSel)  #重插入
        if drawing == 2:
            ax = ga.frontplot(NDSetObjV, False, ax, gen + 1)  # 绘制动态图
    end_time = time.time()  # 结束计时
    #=========================绘图及输出结果=========================
    if drawing != 0:
        ga.frontplot(NDSetObjV, True)
    times = end_time - start_time
    print('用时:', times, '秒')
    print('帕累托前沿点个数:', NDSet.shape[0], '个')
    print('单位时间找到帕累托前沿点个数:', int(NDSet.shape[0] // times), '个')
    # 返回帕累托最优集以及执行时间
    return [ObjV, NDSet, NDSetObjV, end_time - start_time]
예제 #12
0
def awGA_templet(AIM_M,
                 AIM_F,
                 PUN_M,
                 PUN_F,
                 ranges,
                 borders,
                 precisions,
                 maxormin,
                 MAXGEN,
                 MAXSIZE,
                 NIND,
                 SUBPOP,
                 GGAP,
                 selectStyle,
                 recombinStyle,
                 recopt,
                 pm,
                 drawing=1):
    """
awGA_templet.py - 基于awGA的多目标优化编程模板

语法:
    该函数除了参数drawing外,不设置可缺省参数。
    当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    awGA_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)
    
输入参数:
    AIM_M - 目标函数的地址,传入该函数前通常由AIM_M = __import__('目标函数名')语句得到
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,传入该函数前通常由PUN_M = __import__('罚函数名')语句得到
    
    PUN_F : str - 罚函数名
    
    ranges : array  - 代表自变量的范围矩阵,要求上界必须大于下界
        例如:[[1, 2, 3],
              [3, 4, 5]]
        表示有3个控制变量,其范围分别是1-3, 2-4, 3-5
                         
    borders : list -(可选参数)代表是否包含变量范围的边界,为1代表控制变量的范围包含该边界
        当为None时,默认设置为全是1的矩阵
        例如:[[1, 0, 1],
              [0, 1, 1]]
        表示上面的三个控制变量的范围分别是:[1, 3)、(2, 4]、[3, 5]
    
    precisions : list -(可选参数)代表控制变量的精度,
        如等于4,表示对应的控制变量的编码可以精确到小数点后4位。
        当precisions为None时,默认precision为1*n的0矩阵(此时表示种群是离散编码的)
        precision的元素必须不小于0
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    MAXSIZE : int - 帕累托最优集最大规模
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图,2表示绘制进化过程的动画。
                    默认drawing为1
算法描述:
    本模板实现了基于适应性权重聚合法(awGA)的多目标优化搜索,
    通过维护一个全局帕累托最优集来实现帕累托前沿的搜索,故并不需要保证种群所有个体都是非支配的
    
"""

    #==========================初始化配置===========================
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    FieldDR = ga.crtfld(ranges, borders, precisions)
    #=========================开始遗传算法进化=======================
    Chrom = ga.crtrp(NIND, FieldDR)  # 创建简单离散种群
    ObjV = aimfuc(Chrom)  # 计算种群目标函数值
    # 定义帕累托最优解记录器
    NDSet = np.zeros((0, ObjV.shape[1]))
    ax = None
    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        if NDSet.shape[0] > MAXSIZE:
            break
        [CombinObjV, weight] = ga.awGA(maxormin * ObjV)  # 计算适应性权重以及多目标的加权单目标
        FitnV = ga.ranking(maxormin * CombinObjV)  # 根据加权单目标计算适应度
        # 更新帕累托最优集以及种群非支配个体的适应度
        [FitnV, NDSet, repnum] = ga.upNDSet(FitnV, maxormin * ObjV,
                                            maxormin * NDSet)
        # 进行遗传操作!!
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  #交叉
        SelCh = ga.mutbga(SelCh, FieldDR, pm)  # 变异
        if repnum > Chrom.shape[0] * 0.1:  # 进行一次高斯变异
            SelCh = ga.mutgau(SelCh, FieldDR, pm)  # 高斯变异
        ObjVSel = aimfuc(SelCh)  # 求育种个体的目标函数值
        [CombinObjV, weight] = ga.awGA(maxormin * ObjVSel)
        FitnVSel = ga.ranking(maxormin * CombinObjV)
        [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 0.9, FitnV, FitnVSel,
                                 ObjV, ObjVSel)  #重插入
        if drawing == 2:
            ax = ga.frontplot(NDSet, False, ax, gen + 1)  # 绘制动态图
    end_time = time.time()  # 结束计时
    #=========================绘图及输出结果=========================
    if drawing != 0:
        ga.frontplot(NDSet, True)
    times = end_time - start_time
    print('用时:' + str(times) + '秒')
    print('帕累托前沿点个数:' + str(NDSet.shape[0]) + '个')
    print('单位时间找到帕累托前沿点个数:' + str(NDSet.shape[0] // times) + '个')
    # 返回帕累托最优集以及执行时间
    return [ObjV, NDSet, end_time - start_time]
예제 #13
0
def sga_code_templet(AIM_M, AIM_F, PUN_M, PUN_F, FieldD, problem, maxormin, MAXGEN, NIND, SUBPOP, GGAP, selectStyle, recombinStyle, recopt, pm, drawing = 1):
    
    """
sga_code_templet.py - 单目标编程模板(二进制/格雷编码)

语法:
    该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    sga_code_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)

输入参数:
    AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到
            目标函数规范定义:f = aimfuc(Phen)
            其中Phen是种群的表现型矩阵
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到
            罚函数规范定义: f = punishing(Phen, FitnV)
            其中Phen是种群的表现型矩阵, FitnV为种群个体适应度列向量
    
    PUN_F : str - 罚函数名
    
    FieldD : array  - 二进制/格雷码种群区域描述器,
        描述种群每个个体的染色体长度和如何解码的矩阵,它有以下结构:
                    
        [lens;		(int) 每个控制变量编码后在染色体中所占的长度
         lb;		(float) 指明每个变量使用的下界
         ub;		(float) 指明每个变量使用的上界
         codes;	(0:binary     | 1:gray) 指明子串是怎么编码的,
                                          0为标准二进制编码,1为各类编码
         scales;  (0: rithmetic | 1:logarithmic) 指明每个子串是否使用对数或算术刻度, 
                                                 1为使用对数刻度,2为使用算术刻度
         lbin;		(0:excluded   | 1:included)
         ubin]		(0:excluded   | 1:included)
                
        lbin和ubin指明范围中是否包含每个边界。
        选择lbin=0或ubin=0,表示范围中不包含相应边界。
        选择lbin=1或ubin=1,表示范围中包含相应边界。
    
    problem : str - 表明是整数问题还是实数问题,'I'表示是整数问题,'R'表示是实数问题                 
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1

输出参数:
    pop_trace : array - 种群进化记录器(进化追踪器),
                        第0列记录着各代种群最优个体的目标函数值
                        第1列记录着各代种群的适应度均值
                        第2列记录着各代种群最优个体的适应度值
    
    var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量
    
    times     : float - 进化所用时间

"""
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F) # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F) # 获得罚函数
    NVAR = FieldD.shape[1] # 得到控制变量的个数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN ,2)) * np.nan)
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN ,NVAR)) * np.nan) 
    """=========================开始遗传算法进化======================="""
    Lind = np.sum(FieldD[0, :]) # 种群染色体长度
    Chrom = ga.crtbp(NIND, Lind) # 生成初始种群
    if problem == 'R':
        variable = ga.bs2rv(Chrom, FieldD) # 解码
    elif problem == 'I':
        if np.any(FieldD >= sys.maxsize):
            variable = ga.bs2int(Chrom, FieldD).astype('object') # 解码
        else:
            variable = ga.bs2int(Chrom, FieldD).astype('int64') # 解码
    ObjV = aimfuc(variable) # 求种群的目标函数值
    
    start_time = time.time() # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        FitnV = ga.ranking(maxormin * ObjV, None, SUBPOP)
        if PUN_F is not None:
            FitnV = punishing(Chrom, FitnV) # 调用罚函数
        # 进行遗传算子
        SelCh=ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP) # 选择
        SelCh=ga.recombin(recombinStyle, Chrom, recopt, SUBPOP) # 重组
        SelCh=ga.mutbin(SelCh,pm) # 变异
        # 计算种群适应度
        if problem == 'R':
            variable = ga.bs2rv(SelCh, FieldD) # 解码
        elif problem == 'I':
            if np.any(FieldD >= sys.maxsize):
                variable = ga.bs2int(SelCh, FieldD).astype('object') # 解码
            else:
                variable = ga.bs2int(SelCh, FieldD).astype('int64')
        ObjVSel = aimfuc(variable) # 求后代的目标函数值
        # 重插入
        [Chrom, ObjV]=ga.reins(Chrom, SelCh, SUBPOP, 2, 1, ObjV, ObjVSel)
        # 计算新一代种群的控制变量解码值
        if problem == 'R':
            variable = ga.bs2rv(Chrom, FieldD) # 解码
        elif problem == 'I':
            if np.any(FieldD >= sys.maxsize):
                variable = ga.bs2int(Chrom, FieldD).astype('object') # 解码
            else:
                variable = ga.bs2int(SelCh, FieldD).astype('int64')
        pop_trace[gen,0] = np.sum(ObjV) // ObjV.shape[0] # 记录种群个体平均目标函数值
        if maxormin == 1:
            pop_trace[gen,1] = np.min(ObjV) # 记录当代目标函数的最优值
            var_trace[gen,:] = variable[np.argmin(ObjV), :] # 记录当代最优的控制变量值
        elif maxormin == -1:
            pop_trace[gen,1] = np.max(ObjV)
            var_trace[gen,:] = variable[np.argmax(ObjV), :] # 记录当代最优的控制变量值
    end_time = time.time() # 结束计时
    
    # 绘图
    if drawing == 1:
        ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']])
    # 输出结果
    if maxormin == 1:
        best_gen = np.argmin(pop_trace[:, 1]) # 记录最优种群是在哪一代
        print('最优的目标函数值为:', np.min(pop_trace[:, 1]))
    elif maxormin == -1:
        best_gen = np.argmax(pop_trace[:, 1]) # 记录最优种群是在哪一代
        print('最优的目标函数值为:', np.max(pop_trace[:, 1]))
    print('最优的控制变量值为:')
    for i in range(NVAR):
        print(var_trace[best_gen, i])
    print('最优的一代是第', best_gen + 1, '代')
    times = end_time - start_time
    print('时间已过', times, '秒')
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, times]
예제 #14
0
def sga_permut_templet(AIM_M,
                       AIM_F,
                       PUN_M,
                       PUN_F,
                       NVAR,
                       VarLen,
                       maxormin,
                       MAXGEN,
                       NIND,
                       SUBPOP,
                       GGAP,
                       selectStyle,
                       recombinStyle,
                       recopt,
                       pm,
                       drawing=1):
    """
sga_permut_templet.py - 单目标编程模板(排列编码)

排列编码即每条染色体的基因都是无重复正整数的编码方式。

语法:
    该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    sga_permut_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)

输入参数:
    AIM_M - 目标函数的地址,传入该函数前通常由AIM_M = __import__('目标函数名')语句得到
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,传入该函数前通常由PUN_M = __import__('罚函数名')语句得到
    
    PUN_F : str - 罚函数名
    
    NVAR : int - 变量个数,排列编码的染色体长度等于变量个数
    
    VarLen : int - 排列集合的大小
                   例如VarLen = 5表示是从1,2,3,4,5中抽取若干个数排列组成染色体
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1

输出参数:
    pop_trace : array - 种群进化记录器(进化追踪器),
                        第0列记录着各代种群最优个体的目标函数值
                        第1列记录着各代种群的适应度均值
                        第2列记录着各代种群最优个体的适应度值
    
    var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量
    
    times     : float - 进化所用时间

"""
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN, 2)) * np.nan)
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN, NVAR)) * np.nan)
    """=========================开始遗传算法进化======================="""
    #生成初始种群
    Chrom = ga.crtpp(NIND, NVAR, VarLen)
    ObjV = aimfuc(Chrom)  # 求种群的目标函数值

    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        FitnV = ga.ranking(maxormin * ObjV, None, SUBPOP)
        if PUN_F is not None:
            FitnV = punishing(Chrom, FitnV)  # 调用罚函数
        # 进行遗传算子
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, Chrom, recopt, SUBPOP)  # 重组
        SelCh = ga.mutpp(SelCh, VarLen, pm)  # 排列编码种群变异
        ObjVSel = aimfuc(SelCh)  # 求后代的目标函数值
        # 重插入
        [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 2, 1, ObjV, ObjVSel)
        pop_trace[gen, 0] = np.sum(ObjV) // ObjV.shape[0]  # 记录种群个体平均目标函数值
        if maxormin == 1:
            pop_trace[gen, 1] = np.min(ObjV)  # 记录当代目标函数的最优值
            var_trace[gen, :] = Chrom[np.argmin(ObjV), :]  # 记录当代最优的控制变量值
        elif maxormin == -1:
            pop_trace[gen, 1] = np.max(ObjV)
            var_trace[gen, :] = Chrom[np.argmax(ObjV), :]  # 记录当代最优的控制变量值
    end_time = time.time()  # 结束计时

    # 绘图
    if drawing == 1:
        ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']])
    # 输出结果
    if maxormin == 1:
        best_gen = np.argmin(pop_trace[:, 1])  # 记录最优种群是在哪一代
        print('最优的目标函数值为:', np.min(pop_trace[:, 1]))
    elif maxormin == -1:
        best_gen = np.argmax(pop_trace[:, 1])  # 记录最优种群是在哪一代
        print('最优的目标函数值为:', np.max(pop_trace[:, 1]))
    print('最优的控制变量值为:')
    for i in range(NVAR):
        print(var_trace[best_gen, i])
    print('最优的一代是第', best_gen + 1, '代')
    times = end_time - start_time
    print('时间已过', times, '秒')
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, times]
예제 #15
0
def sga_real_templet(AIM_M,
                     AIM_F,
                     PUN_M,
                     PUN_F,
                     FieldDR,
                     problem,
                     maxormin,
                     MAXGEN,
                     NIND,
                     SUBPOP,
                     GGAP,
                     selectStyle,
                     recombinStyle,
                     recopt,
                     pm,
                     drawing=1):
    """
sga_real_templet.py - 单目标编程模板(实值编码)

语法:
    该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    sga_real_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)

输入参数:
    AIM_M - 目标函数的地址,传入该函数前通常由AIM_M = __import__('目标函数名')语句得到
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,传入该函数前通常由PUN_M = __import__('罚函数名')语句得到
    
    PUN_F : str - 罚函数名
    
    FieldDR : array - 实际值种群区域描述器
        [lb;		(float) 指明每个变量使用的下界
         ub]		(float) 指明每个变量使用的上界
         注:不需要考虑是否包含变量的边界值。在crtfld中已经将是否包含边界值进行了处理
         本函数生成的矩阵的元素值在FieldDR的[下界, 上界)之间
    
    problem : str - 表明是整数问题还是实数问题,'I'表示是整数问题,'R'表示是实数问题                 
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1

输出参数:
    pop_trace : array - 种群进化记录器(进化追踪器),
                        第0列记录着各代种群最优个体的目标函数值
                        第1列记录着各代种群的适应度均值
                        第2列记录着各代种群最优个体的适应度值
    
    var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量
    
    times     : float - 进化所用时间

"""
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    NVAR = FieldDR.shape[1]  # 得到控制变量的个数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN, 2)) * np.nan)
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN, NVAR)) * np.nan)
    """=========================开始遗传算法进化======================="""
    if problem == 'R':
        Chrom = ga.crtrp(NIND, FieldDR)  # 生成初始种群
    elif problem == 'I':
        Chrom = ga.crtip(NIND, FieldDR)
    ObjV = aimfuc(Chrom)  # 求种群的目标函数值

    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        FitnV = ga.ranking(maxormin * ObjV, None, SUBPOP)
        if PUN_F is not None:
            FitnV = punishing(Chrom, FitnV)  # 调用罚函数
        # 进行遗传算子
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, Chrom, recopt, SUBPOP)  # 重组
        if problem == 'R':
            SelCh = ga.mutbga(SelCh, FieldDR, pm)  # 变异
        elif problem == 'I':
            SelCh = ga.mutint(SelCh, FieldDR, pm)
        ObjVSel = aimfuc(SelCh)  # 求后代的目标函数值
        # 重插入
        [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 2, 1, ObjV, ObjVSel)
        pop_trace[gen, 0] = np.sum(ObjV) / ObjV.shape[0]  # 记录种群个体平均目标函数值
        if maxormin == 1:
            pop_trace[gen, 1] = np.min(ObjV)  # 记录当代目标函数的最优值
            var_trace[gen, :] = Chrom[np.argmin(ObjV), :]  # 记录当代最优的控制变量值
        elif maxormin == -1:
            pop_trace[gen, 1] = np.max(ObjV)
            var_trace[gen, :] = Chrom[np.argmax(ObjV), :]  # 记录当代最优的控制变量值
    end_time = time.time()  # 结束计时

    # 绘图
    if drawing == 1:
        ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']])
    # 输出结果
    if maxormin == 1:
        best_gen = np.argmin(pop_trace[:, 1])  # 记录最优种群是在哪一代
        print('最优的目标函数值为:' + str(np.min(pop_trace[:, 1])))
    elif maxormin == -1:
        best_gen = np.argmax(pop_trace[:, 1])  # 记录最优种群是在哪一代
        print('最优的目标函数值为:' + str(np.max(pop_trace[:, 1])))
    print('最优的控制变量值为:')
    for i in range(NVAR):
        print(var_trace[best_gen, i])
    print('最优的一代是第' + str(best_gen + 1) + '代')
    times = end_time - start_time
    print('时间已过' + str(times) + '秒')
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, times]
예제 #16
0
def sga_real_templet(AIM_M,
                     AIM_F,
                     PUN_M,
                     PUN_F,
                     FieldDR,
                     problem,
                     maxormin,
                     MAXGEN,
                     NIND,
                     SUBPOP,
                     GGAP,
                     selectStyle,
                     recombinStyle,
                     recopt,
                     pm,
                     drawing=1):
    """
sga_real_templet.py - 单目标编程模板(实值编码)

语法:
    该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    sga_real_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)

输入参数:
    AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到
            目标函数规范定义:f = aimfuc(Phen)
            其中Phen是种群的表现型矩阵
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到
            罚函数规范定义: f = punishing(Phen, FitnV)
            其中Phen是种群的表现型矩阵, FitnV为种群个体适应度列向量
    
    PUN_F : str - 罚函数名
    
    FieldDR : array - 实际值种群区域描述器
        [lb;		(float) 指明每个变量使用的下界
         ub]		(float) 指明每个变量使用的上界
         注:不需要考虑是否包含变量的边界值。在crtfld中已经将是否包含边界值进行了处理
         本函数生成的矩阵的元素值在FieldDR的[下界, 上界)之间
    
    problem : str - 表明是整数问题还是实数问题,'I'表示是整数问题,'R'表示是实数问题                 
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1

输出参数:
    pop_trace : array - 种群进化记录器(进化追踪器),
                        第0列记录着各代种群最优个体的目标函数值
                        第1列记录着各代种群的适应度均值
                        第2列记录着各代种群最优个体的适应度值
    
    var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量
    
    times     : float - 进化所用时间

模板使用注意:
    1.本模板调用的目标函数形如:aimfuc(Phen), 其中Phen表示种群的表现型矩阵
    2.本模板调用的罚函数形如: punishing(Phen, FitnV), 其中FitnV为用其他算法求得的适应度
      在罚函数定义中,必须将不满足约束条件的个体对应的适应度设为0,否则请修改模板使用

"""
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    exIdx = np.array([])  # 存储非可行解的下标
    NVAR = FieldDR.shape[1]  # 得到控制变量的个数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN, 2)) * np.nan)
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN, NVAR)) * np.nan)
    """=========================开始遗传算法进化======================="""
    if problem == 'R':
        Chrom = ga.crtrp(NIND, FieldDR)  # 生成初始种群
    elif problem == 'I':
        Chrom = ga.crtip(NIND, FieldDR)
    ObjV = aimfuc(Chrom)  # 求种群的目标函数值

    start_time = time.time()  # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        FitnV = ga.ranking(maxormin * ObjV, None, SUBPOP)
        if PUN_F is not None:
            [FitnV, exIdx] = punishing(Chrom, FitnV)  # 调用罚函数
        # 记录进化过程
        bestIdx = np.argmax(FitnV)  # 获取最优个体的下标
        wrongSign = np.ones((FitnV.shape[0], 1))
        wrongSign[list(exIdx)] = 0  # 对非可行解作标记
        if wrongSign[bestIdx] != 0:
            feasible = np.where(wrongSign != 0)[0]  # 排除非可行解
            pop_trace[gen, 0] = np.sum(
                ObjV[feasible]) / ObjV[feasible].shape[0]  # 记录种群个体平均目标函数值
            pop_trace[gen, 1] = ObjV[bestIdx]  # 记录当代目标函数的最优值
            var_trace[gen, :] = Chrom[bestIdx, :]  # 记录当代最优的控制变量值
            repnum = len(
                np.where(ObjV[np.argmax(FitnV)] == ObjV)[0])  # 计算最优个体重复数
        # 进行遗传算子
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, Chrom, recopt, SUBPOP)  # 重组
        if problem == 'R':
            SelCh = ga.mutbga(SelCh, FieldDR, pm)  # 变异
            if repnum > Chrom.shape[0] * 0.01:  # 当最优个体重复率高达1%时,进行一次高斯变异
                SelCh = ga.mutgau(SelCh, FieldDR, pm)  # 高斯变异
        elif problem == 'I':
            SelCh = ga.mutint(SelCh, FieldDR, pm)
        ObjVSel = aimfuc(SelCh)  # 求后代的目标函数值
        # 重插入
        [Chrom, ObjV] = ga.reins(Chrom, SelCh, SUBPOP, 2, 1, ObjV, ObjVSel)
    end_time = time.time()  # 结束计时
    # 后处理进化记录器
    delIdx = np.where(np.isnan(pop_trace))[0]
    pop_trace = np.delete(pop_trace, delIdx, 0)
    var_trace = np.delete(var_trace, delIdx, 0)
    # 绘图
    if drawing == 1:
        ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']])
    # 输出结果
    if maxormin == 1:
        best_gen = np.argmin(pop_trace[:, 1])  # 记录最优种群是在哪一代
        print('最优的目标函数值为:', np.min(pop_trace[:, 1]))
    elif maxormin == -1:
        best_gen = np.argmax(pop_trace[:, 1])  # 记录最优种群是在哪一代
        print('最优的目标函数值为:', np.max(pop_trace[:, 1]))
    print('最优的控制变量值为:')
    for i in range(NVAR):
        print(var_trace[best_gen, i])
    print('最优的一代是第', best_gen + 1, '代')
    times = end_time - start_time
    print('时间已过', times, '秒')
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, times]
예제 #17
0
def sga_permut_templet(AIM_M, AIM_F, PUN_M, PUN_F, NVAR, VarLen, maxormin, MAXGEN, NIND, SUBPOP, GGAP, selectStyle, recombinStyle, recopt, pm, drawing = 1):
    
    """
sga_permut_templet.py - 单目标编程模板(排列编码)

排列编码即每条染色体的基因都是无重复正整数的编码方式。

语法:
    该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    sga_permut_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)

输入参数:
    AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到
            目标函数规范定义:f = aimfuc(Phen)
            其中Phen是种群的表现型矩阵
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到
            罚函数规范定义: f = punishing(Phen, FitnV)
            其中Phen是种群的表现型矩阵, FitnV为种群个体适应度列向量
    
    PUN_F : str - 罚函数名
    
    NVAR : int - 变量个数,排列编码的染色体长度等于变量个数
    
    VarLen : int - 排列集合的大小
                   例如VarLen = 5表示是从1,2,3,4,5中抽取若干个数排列组成染色体
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1

输出参数:
    pop_trace : array - 种群进化记录器(进化追踪器),
                        第0列记录着各代种群最优个体的目标函数值
                        第1列记录着各代种群的适应度均值
                        第2列记录着各代种群最优个体的适应度值
    
    var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量
    
    times     : float - 进化所用时间

模板使用注意:
    1.本模板调用的目标函数形如:aimfuc(Phen), 其中Phen表示种群的表现型矩阵
    2.本模板调用的罚函数形如: punishing(Phen, FitnV), 其中FitnV为用其他算法求得的适应度
      在罚函数定义中,必须将不满足约束条件的个体对应的适应度设为0,否则请修改模板使用

"""
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F) # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F) # 获得罚函数
    exIdx = np.array([]) # 存储非可行解的下标
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN ,2)) * np.nan)
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN ,NVAR)) * np.nan) 
    """=========================开始遗传算法进化======================="""
    #生成初始种群
    Chrom = ga.crtpp(NIND, NVAR, VarLen)
    ObjV = aimfuc(Chrom) # 求种群的目标函数值
    
    start_time = time.time() # 开始计时
    # 开始进化!!
    for gen in range(MAXGEN):
        FitnV = ga.ranking(maxormin * ObjV, None, SUBPOP)
        if PUN_F is not None:
            [FitnV, exIdx] = punishing(Chrom, FitnV) # 调用罚函数
        # 记录进化过程
        bestIdx = np.argmax(FitnV) # 获取最优个体的下标
        wrongSign = np.ones((FitnV.shape[0], 1))
        wrongSign[list(exIdx)] = 0 # 对非可行解作标记
        if wrongSign[bestIdx] != 0:
            feasible = np.where(wrongSign != 0)[0] # 排除非可行解
            pop_trace[gen,0] = np.sum(ObjV[feasible]) / ObjV[feasible].shape[0] # 记录种群个体平均目标函数值
            pop_trace[gen,1] = ObjV[bestIdx] # 记录当代目标函数的最优值
            var_trace[gen,:] = Chrom[bestIdx, :] # 记录当代最优的控制变量值
        # 进行遗传算子
        SelCh=ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP) # 选择
        SelCh=ga.recombin(recombinStyle, Chrom, recopt, SUBPOP) # 重组
        SelCh=ga.mutpp(SelCh, VarLen, pm) # 排列编码种群变异
        ObjVSel = aimfuc(SelCh) # 求后代的目标函数值
        # 重插入
        [Chrom, ObjV]=ga.reins(Chrom, SelCh, SUBPOP, 2, 1, ObjV, ObjVSel)
    end_time = time.time() # 结束计时
    # 后处理进化记录器
    delIdx = np.where(np.isnan(pop_trace))[0]
    pop_trace = np.delete(pop_trace, delIdx, 0)
    var_trace = np.delete(var_trace, delIdx, 0)
    # 绘图
    if drawing == 1:
        ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']])
    # 输出结果
    if maxormin == 1:
        best_gen = np.argmin(pop_trace[:, 1]) # 记录最优种群是在哪一代
        print('最优的目标函数值为:', np.min(pop_trace[:, 1]))
    elif maxormin == -1:
        best_gen = np.argmax(pop_trace[:, 1]) # 记录最优种群是在哪一代
        print('最优的目标函数值为:', np.max(pop_trace[:, 1]))
    print('最优的控制变量值为:')
    for i in range(NVAR):
        print(var_trace[best_gen, i])
    print('最优的一代是第', best_gen + 1, '代')
    times = end_time - start_time
    print('时间已过', times, '秒')
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, times]
예제 #18
0
def sga_real_templet(AIM_M,
                     AIM_F,
                     PUN_M,
                     PUN_F,
                     FieldDR,
                     problem,
                     maxormin,
                     MAXGEN,
                     NIND,
                     SUBPOP,
                     GGAP,
                     selectStyle,
                     recombinStyle,
                     recopt,
                     pm,
                     distribute,
                     drawing=1):
    """
sga_real_templet.py - 单目标编程模板(实值编码)

语法:
    该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    sga_real_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)

输入参数:
    AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到
            目标函数规范定义:[f,LegV] = aimfuc(Phen,LegV)
            其中Phen是种群的表现型矩阵, LegV为种群的可行性列向量,f为种群的目标函数值矩阵
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到
            罚函数规范定义: newFitnV = punishing(LegV, FitnV)
            其中LegV为种群的可行性列向量, FitnV为种群个体适应度列向量
            一般在罚函数中对LegV为0的个体进行适应度惩罚,返回修改后的适应度列向量newFitnV
    
    PUN_F : str - 罚函数名
    
    FieldDR : array - 实际值种群区域描述器
        [lb;		(float) 指明每个变量使用的下界
         ub]		(float) 指明每个变量使用的上界
         注:不需要考虑是否包含变量的边界值。在crtfld中已经将是否包含边界值进行了处理
         本函数生成的矩阵的元素值在FieldDR的[下界, 上界)之间
    
    problem : str - 表明是整数问题还是实数问题,'I'表示是整数问题,'R'表示是实数问题                 
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    distribute : bool - 是否增强种群的分布性(可能会造成收敛慢)
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1

输出参数:
    pop_trace : array - 种群进化记录器(进化追踪器),
                        第0列记录着各代种群最优个体的目标函数值
                        第1列记录着各代种群的适应度均值
                        第2列记录着各代种群最优个体的适应度值
    
    var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量
    
    times     : float - 进化所用时间

模板使用注意:
    1.本模板调用的目标函数形如:[ObjV,LegV] = aimfuc(Phen,LegV), 
      其中Phen表示种群的表现型矩阵, LegV为种群的可行性列向量(详见Geatpy数据结构)
    2.本模板调用的罚函数形如: newFitnV = punishing(LegV, FitnV), 
      其中FitnV为用其他算法求得的适应度
    若不符合上述规范,则请修改算法模板或自定义新算法模板
    3.关于'maxormin': geatpy的内核函数全是遵循“最小化目标”的约定的,即目标函数值越小越好。
      当需要优化最大化的目标时,需要设置'maxormin'为-1。
      本算法模板是正确使用'maxormin'的典型范例,其具体用法如下:
      当调用的函数传入参数包含与“目标函数值矩阵”有关的参数(如ObjV,ObjVSel,NDSetObjV等)时,
      查看该函数的参考资料(可用'help'命令查看,也可到官网上查看相应的教程),
      里面若要求传入前对参数乘上'maxormin',则需要乘上。
      里面若要求对返回参数乘上'maxormin'进行还原,
      则调用函数返回得到的相应参数需要乘上'maxormin'进行还原,否则其正负号就会被改变。

"""
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    NVAR = FieldDR.shape[1]  # 得到控制变量的个数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN, 2)) * np.nan)
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN, NVAR)) * np.nan)
    ax = None  # 存储上一帧图形
    repnum = 0  # 初始化重复个体数为0
    """=========================开始遗传算法进化======================="""
    if problem == 'R':
        Chrom = ga.crtrp(NIND, FieldDR)  # 生成初始种群
    elif problem == 'I':
        Chrom = ga.crtip(NIND, FieldDR)
    LegV = np.ones((NIND, 1))  # 初始化种群的可行性列向量
    [ObjV, LegV] = aimfuc(Chrom, LegV)  # 求种群的目标函数值
    gen = 0
    badCounter = 0  # 用于记录在“遗忘策略下”被忽略的代数
    # 开始进化!!
    start_time = time.time()  # 开始计时
    while gen < MAXGEN:
        if badCounter >= 10 * MAXGEN:  # 若多花了10倍的迭代次数仍没有可行解出现,则跳出
            break
        FitnV = ga.ranking(maxormin * ObjV, LegV, None, SUBPOP)
        if PUN_F is not None:
            FitnV = punishing(LegV, FitnV)  # 调用罚函数
        # 记录进化过程
        bestIdx = np.argmax(FitnV)  # 获取最优个体的下标
        if LegV[bestIdx] != 0:
            feasible = np.where(LegV != 0)[0]  # 排除非可行解
            pop_trace[gen, 0] = np.sum(
                ObjV[feasible]) / ObjV[feasible].shape[0]  # 记录种群个体平均目标函数值
            pop_trace[gen, 1] = ObjV[bestIdx]  # 记录当代目标函数的最优值
            var_trace[gen, :] = Chrom[bestIdx, :]  # 记录当代最优的控制变量值
            repnum = len(
                np.where(ObjV[np.argmax(FitnV)] == ObjV)[0])  # 计算最优个体重复数
            # 绘制动态图
            if drawing == 2:
                ax = ga.sgaplot(pop_trace[:, [1]], '种群最优个体目标函数值', False, ax,
                                gen)
            badCounter = 0  # badCounter计数器清零
        else:
            gen -= 1  # 忽略这一代(遗忘策略)
            badCounter += 1
        if distribute == True:  # 若要增强种群的分布性(可能会造成收敛慢)
            idx = np.argsort(ObjV[:, 0], 0)
            dis = np.diff(ObjV[idx, 0]) / (np.max(ObjV[idx, 0]) - np.min(
                ObjV[idx, 0]) + 1)  # 差分计算距离的修正偏移量
            dis = np.hstack([dis, dis[-1]])
            dis = dis + np.min(dis)  # 修正偏移量+最小量=修正绝对量
            FitnV[idx, 0] *= np.exp(dis)  # 根据相邻距离修改适应度,突出相邻距离大的个体,以增加种群的多样性
        # 进行遗传算子
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  # 对所选个体进行重组
        if problem == 'R':
            SelCh = ga.mutbga(SelCh, FieldDR, pm)  # 变异
            if repnum > Chrom.shape[0] * 0.01:  # 当最优个体重复率高达1%时,进行一次高斯变异
                SelCh = ga.mutgau(SelCh, FieldDR, pm)  # 高斯变异
        elif problem == 'I':
            SelCh = ga.mutint(SelCh, FieldDR, pm)
        LegVSel = np.ones((SelCh.shape[0], 1))  # 初始化育种种群的可行性列向量
        [ObjVSel, LegVSel] = aimfuc(SelCh, LegVSel)  # 求育种种群的目标函数值
        FitnVSel = ga.ranking(maxormin * ObjVSel, LegVSel, None,
                              SUBPOP)  # 计算育种种群的适应度
        if PUN_F is not None:
            FitnVSel = punishing(LegVSel, FitnVSel)  # 调用罚函数
        # 重插入
        [Chrom, ObjV, LegV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 1, FitnV,
                                       FitnVSel, ObjV, ObjVSel, LegV, LegVSel)
        gen += 1
    end_time = time.time()  # 结束计时
    times = end_time - start_time
    # 后处理进化记录器
    delIdx = np.where(np.isnan(pop_trace))[0]
    pop_trace = np.delete(pop_trace, delIdx, 0)
    var_trace = np.delete(var_trace, delIdx, 0)
    if pop_trace.shape[0] == 0:
        raise RuntimeError('error: no feasible solution. (有效进化代数为0,没找到可行解。)')
    # 绘图
    if drawing != 0:
        ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']])
    # 输出结果
    if maxormin == 1:
        best_gen = np.argmin(pop_trace[:, 1])  # 记录最优种群是在哪一代
        best_ObjV = np.min(pop_trace[:, 1])
    elif maxormin == -1:
        best_gen = np.argmax(pop_trace[:, 1])  # 记录最优种群是在哪一代
        best_ObjV = np.max(pop_trace[:, 1])
    print('最优的目标函数值为:%s' % (best_ObjV))
    print('最优的控制变量值为:')
    for i in range(NVAR):
        print(var_trace[best_gen, i])
    print('有效进化代数:%s' % (pop_trace.shape[0]))
    print('最优的一代是第 %s 代' % (best_gen + 1))
    print('时间已过 %s 秒' % (times))
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, times]
예제 #19
0
def sga_permut_templet(AIM_M,
                       AIM_F,
                       PUN_M,
                       PUN_F,
                       NVAR,
                       VarLen,
                       maxormin,
                       MAXGEN,
                       NIND,
                       SUBPOP,
                       GGAP,
                       selectStyle,
                       recombinStyle,
                       recopt,
                       pm,
                       distribute,
                       drawing=1):
    """
sga_permut_templet.py - 单目标编程模板(排列编码)

排列编码即每条染色体的基因都是无重复正整数的编码方式。

语法:
    该函数除了参数drawing外,不设置可缺省参数。当某个参数需要缺省时,在调用函数时传入None即可。
    比如当没有罚函数时,则在调用编程模板时将第3、4个参数设置为None即可,如:
    sga_permut_templet(AIM_M, 'aimfuc', None, None, ..., maxormin)

输入参数:
    AIM_M - 目标函数的地址,由AIM_M = __import__('目标函数所在文件名')语句得到
            目标函数规范定义:[f,LegV] = aimfuc(Phen,LegV)
            其中Phen是种群的表现型矩阵, LegV为种群的可行性列向量,f为种群的目标函数值矩阵
    
    AIM_F : str - 目标函数名
    
    PUN_M - 罚函数的地址,由PUN_M = __import__('罚函数所在文件名')语句得到
            罚函数规范定义: newFitnV = punishing(LegV, FitnV)
            其中LegV为种群的可行性列向量, FitnV为种群个体适应度列向量
            一般在罚函数中对LegV为0的个体进行适应度惩罚,返回修改后的适应度列向量newFitnV
    
    PUN_F : str - 罚函数名
    
    NVAR : int - 变量个数,排列编码的染色体长度等于变量个数
    
    VarLen : int - 排列集合的大小
                   例如VarLen = 5表示是从1,2,3,4,5中抽取若干个数排列组成染色体
    
    maxormin int - 最小最大化标记,1表示目标函数最小化;-1表示目标函数最大化
    
    MAXGEN : int - 最大遗传代数
    
    NIND : int - 种群规模,即种群中包含多少个个体
    
    SUBPOP : int - 子种群数量,即对一个种群划分多少个子种群
    
    GGAP : float - 代沟,表示子代与父代染色体及性状不相同的概率
    
    selectStyle : str - 指代所采用的低级选择算子的名称,如'rws'(轮盘赌选择算子)
    
    recombinStyle: str - 指代所采用的低级重组算子的名称,如'xovsp'(单点交叉)
    
    recopt : float - 交叉概率
    
    pm : float - 重组概率
    
    distribute : bool - 是否增强种群的分布性(可能会造成收敛慢)
    
    drawing : int - (可选参数),0表示不绘图,1表示绘制最终结果图。默认drawing为1

输出参数:
    pop_trace : array - 种群进化记录器(进化追踪器),
                        第0列记录着各代种群最优个体的目标函数值
                        第1列记录着各代种群的适应度均值
                        第2列记录着各代种群最优个体的适应度值
    
    var_trace : array - 变量记录器,记录着各代种群最优个体的变量值,每一列对应一个控制变量
    
    times     : float - 进化所用时间

模板使用注意:
    1.本模板调用的目标函数形如:[ObjV,LegV] = aimfuc(Phen,LegV), 
      其中Phen表示种群的表现型矩阵, LegV为种群的可行性列向量(详见Geatpy数据结构)
    2.本模板调用的罚函数形如: newFitnV = punishing(LegV, FitnV), 
      其中FitnV为用其他算法求得的适应度
    若不符合上述规范,则请修改算法模板或自定义新算法模板
    3.关于'maxormin': geatpy的内核函数全是遵循“最小化目标”的约定的,即目标函数值越小越好。
      当需要优化最大化的目标时,需要设置'maxormin'为-1。
      本算法模板是正确使用'maxormin'的典型范例,其具体用法如下:
      当调用的函数传入参数包含与“目标函数值矩阵”有关的参数(如ObjV,ObjVSel,NDSetObjV等)时,
      查看该函数的参考资料(可用'help'命令查看,也可到官网上查看相应的教程),
      里面若要求传入前对参数乘上'maxormin',则需要乘上。
      里面若要求对返回参数乘上'maxormin'进行还原,
      则调用函数返回得到的相应参数需要乘上'maxormin'进行还原,否则其正负号就会被改变。

"""
    """==========================初始化配置==========================="""
    # 获取目标函数和罚函数
    aimfuc = getattr(AIM_M, AIM_F)  # 获得目标函数
    if PUN_F is not None:
        punishing = getattr(PUN_M, PUN_F)  # 获得罚函数
    # 定义进化记录器,初始值为nan
    pop_trace = (np.zeros((MAXGEN, 2)) * np.nan)
    # 定义变量记录器,记录控制变量值,初始值为nan
    var_trace = (np.zeros((MAXGEN, NVAR)) * np.nan)
    ax = None  # 存储上一帧图形
    """=========================开始遗传算法进化======================="""
    #生成初始种群
    Chrom = ga.crtpp(NIND, NVAR, VarLen)
    LegV = np.ones((NIND, 1))  # 初始化种群的可行性列向量
    [ObjV, LegV] = aimfuc(Chrom, LegV)  # 求种群的目标函数值
    gen = 0
    badCounter = 0  # 用于记录在“遗忘策略下”被忽略的代数
    # 开始进化!!
    start_time = time.time()  # 开始计时
    while gen < MAXGEN:
        if badCounter >= 10 * MAXGEN:  # 若多花了10倍的迭代次数仍没有可行解出现,则跳出
            break
        FitnV = ga.ranking(maxormin * ObjV, LegV, None, SUBPOP)
        if PUN_F is not None:
            FitnV = punishing(LegV, FitnV)  # 调用罚函数
        # 记录进化过程
        bestIdx = np.argmax(FitnV)  # 获取最优个体的下标
        if LegV[bestIdx] != 0:
            feasible = np.where(LegV != 0)[0]  # 排除非可行解
            pop_trace[gen, 0] = np.sum(
                ObjV[feasible]) / ObjV[feasible].shape[0]  # 记录种群个体平均目标函数值
            pop_trace[gen, 1] = ObjV[bestIdx]  # 记录当代目标函数的最优值
            var_trace[gen, :] = Chrom[bestIdx, :]  # 记录当代最优的控制变量值
            # 绘制动态图
            if drawing == 2:
                ax = ga.sgaplot(pop_trace[:, [1]], '种群最优个体目标函数值', False, ax,
                                gen)
            badCounter = 0  # badCounter计数器清零
        else:
            gen -= 1  # 忽略这一代(遗忘策略)
            badCounter += 1
        # 进行遗传算子
        SelCh = ga.selecting(selectStyle, Chrom, FitnV, GGAP, SUBPOP)  # 选择
        SelCh = ga.recombin(recombinStyle, SelCh, recopt, SUBPOP)  # 对选择的个体进行重组
        SelCh = ga.mutpp(SelCh, VarLen, pm)  # 排列编码种群变异
        LegVSel = np.ones((SelCh.shape[0], 1))  # 初始化育种种群的可行性列向量
        [ObjVSel, LegVSel] = aimfuc(SelCh, LegVSel)  # 求育种种群的目标函数值
        FitnVSel = ga.ranking(maxormin * ObjVSel, LegVSel, None,
                              SUBPOP)  # 计算育种种群的适应度
        if PUN_F is not None:
            FitnVSel = punishing(LegVSel, FitnVSel)  # 调用罚函数
        # 重插入
        [Chrom, ObjV, LegV] = ga.reins(Chrom, SelCh, SUBPOP, 1, 1, FitnV,
                                       FitnVSel, ObjV, ObjVSel, LegV, LegVSel)
        gen += 1
    end_time = time.time()  # 结束计时
    times = end_time - start_time
    # 后处理进化记录器
    delIdx = np.where(np.isnan(pop_trace))[0]
    pop_trace = np.delete(pop_trace, delIdx, 0)
    var_trace = np.delete(var_trace, delIdx, 0)
    if pop_trace.shape[0] == 0:
        raise RuntimeError('error: no feasible solution. (有效进化代数为0,没找到可行解。)')
    # 绘图
    if drawing != 0:
        ga.trcplot(pop_trace, [['种群个体平均目标函数值', '种群最优个体目标函数值']])
    # 输出结果
    if maxormin == 1:
        best_gen = np.argmin(pop_trace[:, 1])  # 记录最优种群是在哪一代
        best_ObjV = np.min(pop_trace[:, 1])
    elif maxormin == -1:
        best_gen = np.argmax(pop_trace[:, 1])  # 记录最优种群是在哪一代
        best_ObjV = np.max(pop_trace[:, 1])
    print('最优的目标函数值为:%f' % (best_ObjV))
    print('最优的控制变量值为:')
    for i in range(NVAR):
        print(var_trace[best_gen, i])
    print('有效进化代数:%d' % (pop_trace.shape[0]))
    print('最优的一代是第 %d 代' % (best_gen + 1))
    print('时间已过 %f 秒' % (times))
    # 返回进化记录器、变量记录器以及执行时间
    return [pop_trace, var_trace, times]