예제 #1
0
def test_gecko_adjustment_sanchez_etal():
    mmol_gdw = pd.read_csv(os.path.join(
        os.path.dirname(__file__),
        '../geckopy/data_files/sanchez-mmol_gdw.csv'),
                           index_col=0,
                           header=None,
                           squeeze=True)
    ggdw = pd.Series(PROTEIN_PROPERTIES.loc[mmol_gdw.index, 'mw'] /
                     1000.) * pd.Series(mmol_gdw)
    model = GeckoModel('multi-pool')
    growth_rate_unlimited_protein = model.slim_optimize()
    model.limit_proteins(ggdw=pd.Series(ggdw))
    growth_rate_limited_protein = model.slim_optimize()
    # should be smaller, but how much..
    assert growth_rate_limited_protein < 0.8 * growth_rate_unlimited_protein
    measured_in_model = set(mmol_gdw.index).intersection(model.proteins)
    assert sum(model.concentrations[p] - ggdw[p]
               for p in measured_in_model) < 1e-10
    assert sum(
        abs(rxn.upper_bound - mmol_gdw[rxn.annotation['uniprot']])
        for rxn in model.individual_protein_exchanges) < 1e-6
    assert sum(rxn.metabolites[model.common_protein_pool] +
               PROTEIN_PROPERTIES.loc[rxn.annotation['uniprot'], 'mw'] / 1000.
               for rxn in model.pool_protein_exchanges) < 1e-6
    assert model.p_measured > 0.25  # With yeast 8.1.3 -> p_measured = 0.296
    assert model.f_mass_fraction_measured_matched_to_total > 0.25  # With yeast 8.1.3 -> f = 0.304
    assert model.protein_pool_exchange.upper_bound > 0.015  # With yeast 8.1.3 -> pool_exchange = 0.0212
예제 #2
0
def test_gecko_adjustment_sanchez_etal():
    mmol_gdw = pd.Series.from_csv(
        os.path.join(os.path.dirname(__file__),
                     '../geckopy/data_files/sanchez-mmol_gdw.csv'))
    ggdw = pd.Series(PROTEIN_PROPERTIES.loc[mmol_gdw.index, 'mw'] /
                     1000.) * pd.Series(mmol_gdw)
    model = GeckoModel('multi-pool')
    growth_rate_unlimited_protein = model.slim_optimize()
    model.limit_proteins(ggdw=pd.Series(ggdw))
    growth_rate_limited_protein = model.slim_optimize()
    # should be smaller, but how much..
    assert growth_rate_limited_protein < 0.8 * growth_rate_unlimited_protein
    measured_in_model = set(mmol_gdw.index).intersection(model.proteins)
    assert sum(model.concentrations[p] - ggdw[p]
               for p in measured_in_model) < 1e-10
    assert sum(
        abs(rxn.upper_bound - mmol_gdw[rxn.annotation['uniprot']])
        for rxn in model.individual_protein_exchanges) < 1e-6
    assert abs(model.p_measured - 0.296) < 1e-2  # section 3.2.6 reports 0.283
    assert sum(rxn.metabolites[model.common_protein_pool] +
               PROTEIN_PROPERTIES.loc[rxn.annotation['uniprot'], 'mw'] / 1000.
               for rxn in model.pool_protein_exchanges) < 1e-6
    # FIXME: section 3.2.6 reports 0.2154
    assert abs(model.f_mass_fraction_measured_matched_to_total - 0.291) < 1e-2
    # FIXME: provided model had 0.0168, value including p_base term is 0.0507 as in matlab..
    assert abs(model.protein_pool_exchange.upper_bound - 0.0203) < 1e-2
    sanchez_biomass = pd.Series.from_csv(
        os.path.join(os.path.dirname(__file__),
                     '../geckopy/data_files/sanchez-biomass.csv'))
    biomass = pd.Series(
        dict((m.id, v) for m, v in model.reactions.r_4041.metabolites.items()))
    # FIXME: poor match with provided model for ATP, ADP, H+, H20, P
    assert sum((biomass - sanchez_biomass).abs()) < 20
예제 #3
0
def prot_ko_optim(prot_measure_fractions=None,
                  prot_measure_ggdw=None,
                  constraints=None,
                  isMultiProc=False,
                  size=1):

    #load model
    if prot_measure_fractions is None and prot_measure_ggdw is None:
        model = GeckoModel("single-pool")
    else:
        model = GeckoModel("multi-pool")
        if prot_measure_fractions:
            model.limit_proteins(fractions=prot_measure_fractions)
        else:
            model.limit_proteins(ggdw=prot_measure_ggdw)

    fileRes = basePath + "Results/optim_KO_Gecko_Yeast_SUCC_max5.csv"

    simulProb = GeckoSimulationProblem(model, constraints=constraints)
    evalFunc = build_evaluation_function("BPCY", "r_2111", "r_2056",
                                         "r_1714_REV")  # max succ exchange
    gecko_strain_optim(simulProb,
                       evaluationFunc=evalFunc,
                       levels=None,
                       isMultiProc=isMultiProc,
                       candidateSize=size,
                       resultFile=fileRes)  #KO_Reaction by default
예제 #4
0
def test_basic_gecko_adjustment():
    in_model = {'P00549': 0.1, 'P31373': 0.1, 'P31382': 0.1, 'P39708': 0.1, 'P39714': 0.1, 'P39726': 0.1, 'Q01574': 0.1}
    not_in_model = {'P10591': 0.1, 'P31383': 0.1, 'P32471': 0.1}
    measurements = pd.concat([pd.Series(in_model), pd.Series(not_in_model)])
    model = GeckoModel('multi-pool')
    model.limit_proteins(fractions=pd.Series(measurements))
    sol = model.optimize()
    assert sol.objective_value > 0.05
    assert len(model.proteins) - len(model.pool_proteins) - len(in_model) == 0
    assert all(rxn.upper_bound > 0 for rxn in model.individual_protein_exchanges)
예제 #5
0
def analysis_ko(resFileName):
    levels = [0, 1e-10, 1e-8, 1e-6, 1e-4, 1e-2, 0.1]

    model = GeckoModel('single-pool')
    df = pandas.DataFrame(index=range(100), columns=["ko", "Biomass"])

    for i in range(100):
        proteins = random.sample(model.proteins, 10)
        dic = {p: 0 for p in proteins}
        model.limit_proteins(pandas.Series(dic))
        res = model.optimize()
        df.loc[i] = (dic, res.objective_value)
    df.to_csv(resFileName)
예제 #6
0
def test_adjust_pool_bounds():
    essential = {'P00498': 0., 'P00815': 0.}
    in_model = {'P00549': 0.1, 'P31373': 0.1, 'P31382': 0.1, 'P39708': 0.1, 'P39714': 0.1, 'P39726': 0.1, 'Q01574': 0.1}
    expected = set('prot_{}_exchange'.format(pool_id) for pool_id in essential)
    measurements = pd.concat([pd.Series(in_model), pd.Series(essential)])
    model = GeckoModel('multi-pool')
    model.limit_proteins(fractions=pd.Series(measurements))
    assert model.slim_optimize() < 1e-3
    model.adjust_pool_bounds(inplace=False)
    assert model.slim_optimize() < 1e-3
    adjustment = model.adjust_pool_bounds(inplace=True)
    observed = set(adjustment['reaction'])
    assert abs(model.slim_optimize() - 0.05) < 1e-3
    assert expected == observed
예제 #7
0
def simulate_wt_multi():
    model = GeckoModel('multi-pool')
    import pandas
    some_measurements = pandas.Series({
        'P00549': 0.1,
        'P31373': 0.1,
        'P31382': 0.1
    })
    model = GeckoModel('multi-pool')
    model.limit_proteins(some_measurements)
    res = model.optimize()

    print(" wt simulation1 ", res.objective_value)
    for r in model.reactions:
        print(r.id, " --> ", res.fluxes[r.id])
예제 #8
0
def loading_yeast_gecko(prot_measure_fractions=None, prot_measure_ggdw=None):
    """
    Loads the provided yeast gecko
    :param pd.Series prot_measure_fractions: measured fraction of proteins
    :param pd.Series prot_measure_ggdw: measured ggdw of proteins
    :return GeckoModel:
    """
    if prot_measure_fractions is None and prot_measure_ggdw is None:
        model = GeckoModel("single-pool")
    else:
        model = GeckoModel("multi-pool")
        if prot_measure_fractions:
            model.limit_proteins(fractions=prot_measure_fractions)
        else:
            model.limit_proteins(ggdw=prot_measure_ggdw)
    return model