def test_3d_4b(): """Alfven operator.""" x, y, z = symbols('x y z') u = IndexedBase('u') v = IndexedBase('v') bx = Constant('bx') by = Constant('by') bz = Constant('bz') b = Tuple(bx, by, bz) c0, c1, c2 = symbols('c0 c1 c2') a = Lambda((x, y, z, v, u), (c0 * Dot(u, v) - c1 * Div(u) * Div(v) + c2 * Dot(Curl(Cross(b, u)), Curl(Cross(b, v))))) print('> input := {0}'.format(a)) # ... expr = construct_weak_form(a, dim=DIM, is_block=True, verbose=True) print('> weak form := {0}'.format(expr)) # ... print('')
def test_3d_4b(): """Alfven operator.""" x,y,z = symbols('x y z') u = IndexedBase('u') v = IndexedBase('v') bx = Constant('bx') by = Constant('by') bz = Constant('bz') b = Tuple(bx, by, bz) c0,c1,c2 = symbols('c0 c1 c2') a = Lambda((x,y,z,v,u), ( c0 * Dot(u, v) - c1 * Div(u) * Div(v) + c2 *Dot(Curl(Cross(b,u)), Curl(Cross(b,v))))) print('> input := {0}'.format(a)) expr = gelatize(a, dim=DIM) print('> gelatized := {0}'.format(expr)) expr, info = initialize_weak_form(expr, dim=DIM) print('> temp form :=') # for a nice printing, we print the dictionary entries one by one for key, value in list(expr.items()): print('\t\t', key, '\t', value) expr = normalize_weak_from(expr) print('> normal form := {0}'.format(expr)) print('')
def test_3d_block_2(): print('============== test_3d_block_2 ================') x, y, z = symbols('x y z') u = IndexedBase('u') v = IndexedBase('v') a = Lambda((x, y, z, v, u), Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v)) print('> input := {0}'.format(a)) # ... create a finite element space p1 = 2 p2 = 2 p3 = 2 ne1 = 2 ne2 = 2 ne3 = 2 # ... print('> Grid :: [{},{},{}]'.format(ne1, ne2, ne3)) print('> Degree :: [{},{},{}]'.format(p1, p2, p3)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) grid_3 = linspace(0., 1., ne3 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V3 = SplineSpace(p3, grid=grid_3) Vx = TensorFemSpace(V1, V2, V3) Vy = TensorFemSpace(V1, V2, V3) Vz = TensorFemSpace(V1, V2, V3) V = VectorFemSpace(Vx, Vy, Vz) # ... # ... create a glt symbol from a string without evaluation expr = glt_symbol(a, space=V) print('> glt symbol := {0}'.format(expr)) # ... # ... symbol_f90 = compile_symbol('symbol_block_2', a, V, backend='fortran') # ... # ... example of symbol evaluation t1 = linspace(-pi, pi, ne1 + 1) t2 = linspace(-pi, pi, ne2 + 1) t3 = linspace(-pi, pi, ne3 + 1) x1 = linspace(0., 1., ne1 + 1) x2 = linspace(0., 1., ne2 + 1) x3 = linspace(0., 1., ne3 + 1) e = zeros((3, 3, ne1 + 1, ne2 + 1, ne3 + 1), order='F') symbol_f90(x1, x2, x3, t1, t2, t3, e) # ... print('')
def test_3d_block_2(): print('============== test_3d_block_2 ================') x, y, z = symbols('x y z') u = IndexedBase('u') v = IndexedBase('v') F = Field('F') a = Lambda((x, y, z, v, u), Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v) + F * u[0] * v[0]) # ... create a finite element space p1 = 2 p2 = 2 p3 = 2 ne1 = 2 ne2 = 2 ne3 = 2 print('> Grid :: [{},{},{}]'.format(ne1, ne2, ne3)) print('> Degree :: [{},{},{}]'.format(p1, p2, p3)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) grid_3 = linspace(0., 1., ne3 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V3 = SplineSpace(p3, grid=grid_3) W = TensorFemSpace(V1, V2, V3) # ... # ... vector space V = VectorFemSpace(W, W, W) # ... F = Spline(W) F.coeffs._data[:, :, :] = 1. # ... kernel_py = compile_kernel('kernel_block_2', a, V, backend='python') kernel_f90 = compile_kernel('kernel_block_2', a, V, backend='fortran') M_py = assemble_matrix(V, kernel_py, fields={'F': F}) M_f90 = assemble_matrix(V, kernel_f90, fields={'F': F}) # ... assert_identical_coo(M_py, M_f90)
def test_3d_3(): x, y, z = symbols('x y z') u = IndexedBase('u') v = IndexedBase('v') a = Lambda((x, y, z, v, u), Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v)) print('> input := {0}'.format(a)) # ... expr = construct_weak_form(a, dim=DIM, is_block=True, verbose=True) print('> weak form := {0}'.format(expr)) # ... print('')
def test_1d_scalar_1(): print('============== test_1d_scalar_1 ================') # ... define the weak formulation x = Symbol('x') u = Symbol('u') v = Symbol('v') a = Lambda((x, v, u), Dot(Grad(u), Grad(v)) + u * v) # ... # ... create a finite element space p = 3 ne = 64 print('> Grid :: {ne}'.format(ne=ne)) print('> Degree :: {p}'.format(p=p)) grid = linspace(0., 1., ne + 1) V = SplineSpace(p, grid=grid) # ... # ... kernel_py = compile_kernel('kernel_scalar_1', a, V, backend='python') kernel_f90 = compile_kernel('kernel_scalar_1', a, V, backend='fortran') M_py = assemble_matrix(V, kernel_py) M_f90 = assemble_matrix(V, kernel_f90) # ... assert_identical_coo(M_py, M_f90)
def test_2d_block_3(): print('============== test_2d_block_3 ================') x, y = symbols('x y') u = Symbol('u') v = Symbol('v') epsilon = Constant('epsilon') Laplace = lambda v, u: Dot(Grad(v), Grad(u)) Mass = lambda v, u: v * u u1, u2, p = symbols('u1 u2 p') v1, v2, q = symbols('v1 v2 q') a = Lambda((x, y, v1, v2, q, u1, u2, p), Laplace(v1, u1) - dx(v1) * p + Laplace(v2, u2) - dy(v2) * p + q * (dx(u1) + dy(u2)) + epsilon * Mass(q, p)) print('> input := {0}'.format(a)) # ... create a finite element space p1 = 2 p2 = 2 ne1 = 8 ne2 = 8 print('> Grid :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2)) print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V = TensorFemSpace(V1, V2) V = VectorFemSpace(V, V, V) # ... # ... kernel_py = compile_kernel('kernel_block_3', a, V, d_args={'epsilon': 'double'}, backend='python') kernel_f90 = compile_kernel('kernel_block_3', a, V, d_args={'epsilon': 'double'}, backend='fortran') M_py = assemble_matrix(V, kernel_py, args={'epsilon': 1.e-3}) M_f90 = assemble_matrix(V, kernel_f90, args={'epsilon': 1.e-3}) # ... assert_identical_coo(M_py, M_f90) print('')
def test_3d_scalar_2(): print('============== test_3d_scalar_2 ================') # ... define the weak formulation x, y, z = symbols('x y z') u = Symbol('u') v = Symbol('v') alpha = Constant('alpha') nu = Constant('nu') a = Lambda((x, v, u), alpha * Dot(Grad(u), Grad(v)) + nu * u * v) # ... # ... create a finite element space p1 = 2 p2 = 2 p3 = 2 ne1 = 2 ne2 = 2 ne3 = 2 # ... print('> Grid :: [{},{},{}]'.format(ne1, ne2, ne3)) print('> Degree :: [{},{},{}]'.format(p1, p2, p3)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) grid_3 = linspace(0., 1., ne3 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V3 = SplineSpace(p3, grid=grid_3) V = TensorFemSpace(V1, V2, V3) # ... # ... kernel_py = compile_kernel('kernel_scalar_2', a, V, d_constants={'nu': 0.1}, d_args={'alpha': 'double'}, backend='python') kernel_f90 = compile_kernel('kernel_scalar_2', a, V, d_constants={'nu': 0.1}, d_args={'alpha': 'double'}, backend='fortran') M_py = assemble_matrix(V, kernel_py, args={'alpha': 2.0}) M_f90 = assemble_matrix(V, kernel_f90, args={'alpha': 2.0}) # ... assert_identical_coo(M_py, M_f90)
def test_2d_block_1(): print('============== test_2d_block_1 ================') x, y = symbols('x y') u = IndexedBase('u') v = IndexedBase('v') a = Lambda((x, y, v, u), Rot(u) * Rot(v) + Div(u) * Div(v) + 0.2 * Dot(u, v)) print('> input := {0}'.format(a)) # ... create a finite element space p1 = 2 p2 = 2 ne1 = 8 ne2 = 8 print('> Grid :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2)) print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) Vx = TensorFemSpace(V1, V2) Vy = TensorFemSpace(V1, V2) V = VectorFemSpace(Vx, Vy) # ... # ... create a glt symbol from a string without evaluation expr = glt_symbol(a, space=V) print('> glt symbol := {0}'.format(expr)) # ... # ... symbol_f90 = compile_symbol('symbol_block_2', a, V, backend='fortran') # ... # ... example of symbol evaluation t1 = linspace(-pi, pi, ne1 + 1) t2 = linspace(-pi, pi, ne2 + 1) x1 = linspace(0., 1., ne1 + 1) x2 = linspace(0., 1., ne2 + 1) e = zeros((2, 2, ne1 + 1, ne2 + 1), order='F') symbol_f90(x1, x2, t1, t2, e) # ... print('')
def test_3d_3(): x,y,z = symbols('x y z') u = IndexedBase('u') v = IndexedBase('v') a = Lambda((x,y,z,v,u), Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v)) print('> input := {0}'.format(a)) expr = gelatize(a, dim=DIM) print('> gelatized := {0}'.format(expr)) expr, info = initialize_weak_form(expr, dim=DIM) print('> temp form :=') # for a nice printing, we print the dictionary entries one by one for key, value in list(expr.items()): print('\t\t', key, '\t', value) expr = normalize_weak_from(expr) print('> normal form := {0}'.format(expr)) print('')
def test_2d_block_2(): print('============== test_2d_block_2 ================') # ... define the weak formulation x, y = symbols('x y') u = IndexedBase('u') v = IndexedBase('v') F = Field('F') a = Lambda( (x, y, v, u), Rot(u) * Rot(v) + Div(u) * Div(v) + 0.2 * Dot(u, v) + F * u[0] * v[0]) # ... # ... create a finite element space p1 = 2 p2 = 2 ne1 = 8 ne2 = 8 print('> Grid :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2)) print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) W = TensorFemSpace(V1, V2) # ... # ... vector space V = VectorFemSpace(W, W) # ... F = Spline(W) F.coeffs._data[:, :] = 1. # ... kernel_py = compile_kernel('kernel_block_2', a, V, backend='python') kernel_f90 = compile_kernel('kernel_block_2', a, V, backend='fortran') M_py = assemble_matrix(V, kernel_py, fields={'F': F}) M_f90 = assemble_matrix(V, kernel_f90, fields={'F': F}) # ... assert_identical_coo(M_py, M_f90)
def test_3d_scalar_4(): print('============== test_3d_scalar_4 ================') # ... define the weak formulation x, y, z = symbols('x y z') u = Symbol('u') v = Symbol('v') F = Field('F') a = Lambda((x, y, z, v, u), Dot(Grad(F * u), Grad(v)) + u * v) # ... # ... create a finite element space p1 = 2 p2 = 2 p3 = 2 ne1 = 2 ne2 = 2 ne3 = 2 # ... print('> Grid :: [{},{},{}]'.format(ne1, ne2, ne3)) print('> Degree :: [{},{},{}]'.format(p1, p2, p3)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) grid_3 = linspace(0., 1., ne3 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V3 = SplineSpace(p3, grid=grid_3) V = TensorFemSpace(V1, V2, V3) # ... F = Spline(V) F.coeffs._data[:, :, :] = 1. # ... kernel_py = compile_kernel('kernel_scalar_4', a, V, backend='python') kernel_f90 = compile_kernel('kernel_scalar_4', a, V, backend='fortran') M_py = assemble_matrix(V, kernel_py, fields={'F': F}) M_f90 = assemble_matrix(V, kernel_f90, fields={'F': F}) # ... assert_identical_coo(M_py, M_f90)
def test_3d_1(): x, y, z = symbols('x y z') u = Symbol('u') v = Symbol('v') a = Lambda((x, y, z, v, u), Dot(Grad(u), Grad(v))) print('> input := {0}'.format(a)) # ... expr = construct_weak_form(a, dim=DIM) print('> weak form := {0}'.format(expr)) # ... print('')
def test_2d_2(): x, y = symbols('x y') u = IndexedBase('u') v = IndexedBase('v') a = Lambda((x, y, v, u), Rot(u) * Rot(v) + Div(u) * Div(v) + 0.2 * Dot(u, v)) print('> input := {0}'.format(a)) # ... expr = construct_weak_form(a, dim=DIM, is_block=True, verbose=True) print('> weak form := {0}'.format(expr)) # ... print('')
def test_2d_1(): x, y = symbols('x y') u = Symbol('u') v = Symbol('v') a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + u * v) print('> input := {0}'.format(a)) expr = gelatize(a, dim=DIM) print('> gelatized := {0}'.format(expr)) expr = normalize_weak_from(expr) print('> normal form := {0}'.format(expr)) print('')
def test_1d_scalar_2(): print('============== test_1d_scalar_2 ================') # ... define the weak formulation x = Symbol('x') u = Symbol('u') v = Symbol('v') alpha = Constant('alpha') nu = Constant('nu') a = Lambda((x, v, u), alpha * Dot(Grad(u), Grad(v)) + nu * u * v) # ... # ... create a finite element space p = 3 ne = 64 print('> Grid :: {ne}'.format(ne=ne)) print('> Degree :: {p}'.format(p=p)) grid = linspace(0., 1., ne + 1) V = SplineSpace(p, grid=grid) # ... # ... kernel_py = compile_kernel('kernel_scalar_2', a, V, d_constants={'nu': 0.1}, d_args={'alpha': 'double'}, backend='python') kernel_f90 = compile_kernel('kernel_scalar_2', a, V, d_constants={'nu': 0.1}, d_args={'alpha': 'double'}, backend='fortran') M_py = assemble_matrix(V, kernel_py, args={'alpha': 2.0}) M_f90 = assemble_matrix(V, kernel_f90, args={'alpha': 2.0}) # ... assert_identical_coo(M_py, M_f90)
def test_1d_scalar_2(): print('============== test_1d_scalar_2 ================') x = Symbol('x') u = Symbol('u') v = Symbol('v') b = Constant('b') a = Lambda((x, v, u), Dot(Grad(b * u), Grad(v)) + u * v) print('> input := {0}'.format(a)) # ... create a finite element space p = 3 ne = 64 print('> Grid :: {ne}'.format(ne=ne)) print('> Degree :: {p}'.format(p=p)) grid = linspace(0., 1., ne + 1) V = SplineSpace(p, grid=grid) # ... # ... create a glt symbol from a string without evaluation expr = glt_symbol(a, space=V) print('> glt symbol := {0}'.format(expr)) # ... # ... symbol_f90 = compile_symbol('symbol_scalar_2', a, V, d_constants={'b': 0.1}, backend='fortran') # ... # ... example of symbol evaluation t1 = linspace(-pi, pi, ne + 1) x1 = linspace(0., 1., ne + 1) e = zeros(ne + 1) symbol_f90(x1, t1, e) # ... print('')
def test_1d_4(): x = Symbol('x') u = Symbol('u') v = Symbol('v') b = Function('b') a = Lambda((x,v,u), Dot(Grad(u), Grad(v)) + b(x)*u*v) print('> input := {0}'.format(a)) # ... expr = construct_weak_form(a, dim=DIM) print('> weak form := {0}'.format(expr)) # ... print('')
def test_3d_scalar_5(): print('============== test_3d_scalar_5 ================') # ... define the weak formulation x, y, z = symbols('x y z') u = Symbol('u') v = Symbol('v') a = Lambda((x, y, z, v, u), dx(dx(u)) * dx(dx(v)) + dy(dy(u)) * dy(dy(v)) + dz(dz(u)) * dz(dz(v)) + Dot(Grad(u), Grad(v)) + u * v) # ... # ... create a finite element space p1 = 2 p2 = 2 p3 = 2 ne1 = 2 ne2 = 2 ne3 = 2 # ... print('> Grid :: [{},{},{}]'.format(ne1, ne2, ne3)) print('> Degree :: [{},{},{}]'.format(p1, p2, p3)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) grid_3 = linspace(0., 1., ne3 + 1) V1 = SplineSpace(p1, grid=grid_1, nderiv=2) V2 = SplineSpace(p2, grid=grid_2, nderiv=2) V3 = SplineSpace(p3, grid=grid_3, nderiv=2) V = TensorFemSpace(V1, V2, V3) # ... # ... kernel_py = compile_kernel('kernel_scalar_5', a, V, backend='python') kernel_f90 = compile_kernel('kernel_scalar_5', a, V, backend='fortran') M_py = assemble_matrix(V, kernel_py) M_f90 = assemble_matrix(V, kernel_f90) # ... assert_identical_coo(M_py, M_f90)
def test_2d_4(): x, y = symbols('x y') u = Symbol('u') v = Symbol('v') bx = Constant('bx') by = Constant('by') b = Tuple(bx, by) a = Lambda((x, y, v, u), 0.2 * u * v + Dot(b, Grad(v)) * u) print('> input := {0}'.format(a)) # ... expr = construct_weak_form(a, dim=DIM, is_block=False) print('> weak form := {0}'.format(expr)) # ... print('')
def test_1d_2(): x,y = symbols('x y') u = Symbol('u') v = Symbol('v') # b = Function('b') b = Constant('b') a = Lambda((x,y,v,u), Dot(Grad(b*u), Grad(v)) + u*v) print('> input := {0}'.format(a)) expr = gelatize(a, dim=DIM) print('> gelatized := {0}'.format(expr)) expr = normalize_weak_from(expr) print('> normal form := {0}'.format(expr)) print('')
def test_3d_1(): x,y,z = symbols('x y z') u = Symbol('u') v = Symbol('v') a = Lambda((x,y,z,v,u), Dot(Grad(u), Grad(v))) print('> input := {0}'.format(a)) expr = gelatize(a, dim=DIM) print('> gelatized := {0}'.format(expr)) expr, info = initialize_weak_form(expr, dim=DIM) print('> temp form := {0}'.format(expr)) expr = normalize_weak_from(expr) print('> normal form := {0}'.format(expr)) print('')
def test_2d_scalar_6(): print('============== test_2d_scalar_6 ================') # ... define the weak formulation x, y = symbols('x y') u = Symbol('u') v = Symbol('v') a = Lambda((x, y, v, u), dx(dx(u)) * dx(dx(v)) + dy(dy(u)) * dy(dy(v)) + Dot(Grad(u), Grad(v)) + u * v) # ... # ... create a finite element space p1 = 2 p2 = 2 ne1 = 8 ne2 = 8 print('> Grid :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2)) print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) V1 = SplineSpace(p1, grid=grid_1, nderiv=2) V2 = SplineSpace(p2, grid=grid_2, nderiv=2) V = TensorFemSpace(V1, V2) # ... # ... kernel_py = compile_kernel('kernel_scalar_6', a, V, backend='python') kernel_f90 = compile_kernel('kernel_scalar_6', a, V, backend='fortran') M_py = assemble_matrix(V, kernel_py) M_f90 = assemble_matrix(V, kernel_f90) # ... assert_identical_coo(M_py, M_f90)
def test_2d_4(): x, y = symbols('x y') u = Symbol('u') v = Symbol('v') bx = Constant('bx') by = Constant('by') b = Tuple(bx, by) a = Lambda((x, y, v, u), 0.2 * u * v + Dot(b, Grad(v)) * u) print('> input := {0}'.format(a)) expr = gelatize(a, dim=DIM) print('> gelatized := {0}'.format(expr)) expr, info = initialize_weak_form(expr, dim=DIM) print('> temp form := {0}'.format(expr)) expr = normalize_weak_from(expr) print('> normal form := {0}'.format(expr)) print('')
def test_2d_block_2(): print('============== test_2d_block_2 ================') x, y = symbols('x y') u = Symbol('u') v = Symbol('v') epsilon = Constant('epsilon') Laplace = lambda v, u: Dot(Grad(v), Grad(u)) Mass = lambda v, u: v * u u1, u2, p = symbols('u1 u2 p') v1, v2, q = symbols('v1 v2 q') a = Lambda((x, y, v1, v2, q, u1, u2, p), Laplace(v1, u1) - dx(v1) * p + Laplace(v2, u2) - dy(v2) * p + q * (dx(u1) + dy(u2)) + epsilon * Mass(q, p)) print('> input := {0}'.format(a)) # ... create a finite element space p1 = 2 p2 = 2 ne1 = 8 ne2 = 8 print('> Grid :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2)) print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V = TensorFemSpace(V1, V2) V = VectorFemSpace(V, V, V) # ... # ... create a glt symbol from a string without evaluation expr = glt_symbol(a, space=V) print('> glt symbol := {0}'.format(expr)) # ... # TODO not working yet => need complex numbers # # ... # symbol_f90 = compile_symbol('symbol_block_2', a, V, # d_constants={'epsilon': 0.1}, # backend='fortran') # # ... # # # ... example of symbol evaluation # t1 = linspace(-pi,pi, ne1+1) # t2 = linspace(-pi,pi, ne2+1) # x1 = linspace(0.,1., ne1+1) # x2 = linspace(0.,1., ne2+1) # e = zeros((2, 2, ne1+1, ne2+1), order='F') # symbol_f90(x1,x2,t1,t2, e) # # ... print('')
def test_2d_scalar_3(): print('============== test_2d_scalar_3 ================') x, y = symbols('x y') u = Symbol('u') v = Symbol('v') b = Function('b') a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + b(x, y) * u * v) print('> input := {0}'.format(a)) # ... create a finite element space p1 = 2 p2 = 2 ne1 = 8 ne2 = 8 print('> Grid :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2)) print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V = TensorFemSpace(V1, V2) # ... # ... create a glt symbol from a string without evaluation expr = glt_symbol(a, space=V) print('> glt symbol := {0}'.format(expr)) # ... # ... user defined function def b(x, y): r = 1. + x * y return r # ... # ... create an interactive pyccel context from pyccel.epyccel import ContextPyccel context = ContextPyccel(name='context_scalar_3') context.insert_function(b, ['double', 'double'], kind='function', results=['double']) context.compile() # ... # ... symbol_f90 = compile_symbol('symbol_scalar_3', a, V, context=context, backend='fortran') # ... # ... example of symbol evaluation t1 = linspace(-pi, pi, ne1 + 1) t2 = linspace(-pi, pi, ne2 + 1) x1 = linspace(0., 1., ne1 + 1) x2 = linspace(0., 1., ne2 + 1) e = zeros((ne1 + 1, ne2 + 1), order='F') symbol_f90(x1, x2, t1, t2, e) # ... print('')
def test_3d_block_4(): print('============== test_3d_block_4 ================') """Alfven operator.""" x, y, z = symbols('x y z') u = IndexedBase('u') v = IndexedBase('v') bx = Constant('bx') by = Constant('by') bz = Constant('bz') b = Tuple(bx, by, bz) c0 = Constant('c0') c1 = Constant('c1') c2 = Constant('c2') a = Lambda((x, y, z, v, u), (c0 * Dot(u, v) + c1 * Div(u) * Div(v) + c2 * Dot(Curl(Cross(b, u)), Curl(Cross(b, v))))) print('> input := {0}'.format(a)) # ... create a finite element space p1 = 2 p2 = 2 p3 = 2 ne1 = 2 ne2 = 2 ne3 = 2 # ... print('> Grid :: [{},{},{}]'.format(ne1, ne2, ne3)) print('> Degree :: [{},{},{}]'.format(p1, p2, p3)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) grid_3 = linspace(0., 1., ne3 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V3 = SplineSpace(p3, grid=grid_3) Vx = TensorFemSpace(V1, V2, V3) Vy = TensorFemSpace(V1, V2, V3) Vz = TensorFemSpace(V1, V2, V3) V = VectorFemSpace(Vx, Vy, Vz) # ... # ... create a glt symbol from a string without evaluation expr = glt_symbol(a, space=V) print('> glt symbol := {0}'.format(expr)) # ... # ... symbol_f90 = compile_symbol('symbol_block_4', a, V, d_constants={ 'bx': 0.1, 'by': 1., 'bz': 0.2, 'c0': 0.1, 'c1': 1., 'c2': 1. }, backend='fortran') # ... # ... example of symbol evaluation t1 = linspace(-pi, pi, ne1 + 1) t2 = linspace(-pi, pi, ne2 + 1) t3 = linspace(-pi, pi, ne3 + 1) x1 = linspace(0., 1., ne1 + 1) x2 = linspace(0., 1., ne2 + 1) x3 = linspace(0., 1., ne3 + 1) e = zeros((3, 3, ne1 + 1, ne2 + 1, ne3 + 1), order='F') symbol_f90(x1, x2, x3, t1, t2, t3, e) # ... print('')
def test_2d_scalar_3(): print('============== test_2d_scalar_3 ================') # ... define the weak formulation x, y = symbols('x y') u = Symbol('u') v = Symbol('v') b = Function('b') a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + b(x, y) * u * v) # ... # ... create a finite element space p1 = 2 p2 = 2 ne1 = 8 ne2 = 8 print('> Grid :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2)) print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V = TensorFemSpace(V1, V2) # ... # ... user defined function def b(x, y): r = 1. + x * (1. - x) + y * (1. - y) return r # ... # ... create an interactive pyccel context from pyccel.epyccel import ContextPyccel context = ContextPyccel(name='context_3') context.insert_function(b, ['double', 'double'], kind='function', results=['double']) context.compile() # ... # ... kernel_py = compile_kernel('kernel_scalar_3', a, V, context=context, verbose=True, backend='python') kernel_f90 = compile_kernel('kernel_scalar_3', a, V, context=context, verbose=True, backend='fortran') # ... # ... M_py = assemble_matrix(V, kernel_py) M_f90 = assemble_matrix(V, kernel_f90) # ... assert_identical_coo(M_py, M_f90)
def test_1d_scalar_3(): print('============== test_1d_scalar_3 ================') x = Symbol('x') u = Symbol('u') v = Symbol('v') b = Function('b') a = Lambda((x, v, u), Dot(Grad(u), Grad(v)) + b(x) * u * v) print('> input := {0}'.format(a)) # ... create a finite element space p = 3 ne = 64 print('> Grid :: {ne}'.format(ne=ne)) print('> Degree :: {p}'.format(p=p)) grid = linspace(0., 1., ne + 1) V = SplineSpace(p, grid=grid) # ... # ... user defined function def b(s): r = 1. + s * (1. - s) return r # ... # ... create an interactive pyccel context from pyccel.epyccel import ContextPyccel context = ContextPyccel(name='context_3') context.insert_function(b, ['double'], kind='function', results=['double']) context.compile() # ... # ... kernel_py = compile_kernel('kernel_scalar_3', a, V, context=context, verbose=True, backend='python') kernel_f90 = compile_kernel('kernel_scalar_3', a, V, context=context, verbose=True, backend='fortran') # ... # ... M_py = assemble_matrix(V, kernel_py) M_f90 = assemble_matrix(V, kernel_f90) # ... assert_identical_coo(M_py, M_f90) print('')
def test_2d_scalar_2(): print('============== test_2d_scalar_2 ================') x, y = symbols('x y') u = Symbol('u') v = Symbol('v') c = Constant('c') b0 = Constant('b0') b1 = Constant('b1') b = Tuple(b0, b1) a = Lambda((x, y, v, u), c * u * v + Dot(b, Grad(v)) * u + Dot(b, Grad(u)) * v) print('> input := {0}'.format(a)) # ... create a finite element space p1 = 2 p2 = 2 ne1 = 8 ne2 = 8 print('> Grid :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2)) print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2)) grid_1 = linspace(0., 1., ne1 + 1) grid_2 = linspace(0., 1., ne2 + 1) V1 = SplineSpace(p1, grid=grid_1) V2 = SplineSpace(p2, grid=grid_2) V = TensorFemSpace(V1, V2) # ... # ... create a glt symbol from a string without evaluation expr = glt_symbol(a, space=V) print('> glt symbol := {0}'.format(expr)) # ... # ... symbol_f90 = compile_symbol('symbol_scalar_2', a, V, d_constants={ 'b0': 0.1, 'b1': 1., 'c': 0.2 }, backend='fortran') # ... # ... example of symbol evaluation t1 = linspace(-pi, pi, ne1 + 1) t2 = linspace(-pi, pi, ne2 + 1) x1 = linspace(0., 1., ne1 + 1) x2 = linspace(0., 1., ne2 + 1) e = zeros((ne1 + 1, ne2 + 1), order='F') symbol_f90(x1, x2, t1, t2, e) # ... print('')