예제 #1
0
                    default=[100, 128, 12800, 25, 100, 2500, 5, 25, 125])
parser.add_argument('--vectors',
                    required=False,
                    type=int,
                    help='number of vectors',
                    default=300)
parser.add_argument('--mtx',
                    required=False,
                    help='path to mtx file',
                    nargs="+",
                    default='none')

args = parser.parse_args()
xclbin_opt = gemx.parse_cfg(args.cfg)
if args.engine == 'spmv':
    gemx.createSPMVHandle(args, xclbin_opt)
else:
    gemx.createFCNHandle(args, xclbin_opt)

A_buf = []
B_buf = []
C_buf = []
bias_buf = []
nnz_size = []

if args.engine == 'spmv':
    min_row = int(xclbin_opt["GEMX_spmvMacGroups"]) * int(
        xclbin_opt["GEMX_spmvWidth"])
    min_col = int(xclbin_opt["GEMX_ddrWidth"])
    if args.mtx == 'none':
        #read matrix size from args.matrix
예제 #2
0
파일: mlp.py 프로젝트: saadmahboob/gemx
    parser.add_argument('--model', required = True, help='model')
    parser.add_argument('--xclbin', required = True, help='file path to FPGA bitstream')
    parser.add_argument('--cfg', required = True, help='file describing properties of .xclbin')
    parser.add_argument('--gemxlib', required = True, help='file path to GEMX host code shared library')
    parser.add_argument('--engine', default = 'fcn', choices=['fcn','spmv','uspmv'],help='choose fcn, spmv, uspmv engine')
    parser.add_argument('--train', default = False, help='set to True if retrain the model')
    args = parser.parse_args()
    xclbin_prop = gemx.parse_cfg(args.cfg)

    #load xclbin 
    if args.engine == 'fcn':
        gemx.createFCNHandle( args, xclbin_prop )
    elif args.engine == 'uspmv':
        gemx.createUSPMVHandle( args, xclbin_prop )
    else:
        gemx.createSPMVHandle( args, xclbin_prop )
        
    train_fd = pd.read_csv(args.data) # Load training data.
    IDcol = 'Run' # A column used to identified the run for data collection; not an independent variable.
    target = 'Class' # The column name for our dependent variable.
    predictors = [x for x in train_fd.columns if x not in [target, IDcol]] # Define column names to use as independent variables.
    
    # Encode class values as integers
    encoder = LabelEncoder()
    encoder.fit(train_fd[target])
    encoded_Y = encoder.transform(train_fd[target])
    # Convert integers to dummy variables (i.e. one hot encoded)
    train_y = np_utils.to_categorical(encoded_Y)

    num_classes =  len(train_fd[target].unique())    
    model = create_keras_model(train_fd[predictors].values.shape[1],num_classes)