stride, n_latent=n_latent), Classifier3Layered(n_latent=n_latent)) checkpoint = torch.load(state_dict_path, map_location=lambda storage, loc: storage) state_dict = checkpoint['model_state_dict'] model.load_encoder_state_dict(state_dict) model.freeze_encoder_weights(expr=r'^.*\.encoding_conv.*$') model.reset_state() for name, param in model.named_parameters(): print(name, param.requires_grad) criterion = torch.nn.NLLLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.00000075) num_epoch = 700 log_int = 5 device = 'cuda' gpu_id = 0 save = True save_int = 25 resume = False run_name = f'class_balance_run_v01_factor_{imbalance_factor}' trainer = Trainer(run_name=run_name, run_root=run_root, model=model, optimizer=optimizer, criterion=criterion,
stride, n_latent=n_latent), Classifier(n_latent=n_latent)) checkpoint = torch.load(state_dict_path, map_location=lambda storage, loc: storage) state_dict = checkpoint['model_state_dict'] model.load_encoder_state_dict(state_dict) model.freeze_encoder_weights() model.reset_state() for name, param in model.named_parameters(): print(name, param.requires_grad) criterion = torch.nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.8) num_epoch = 10 log_int = 1 device = 'cpu' save = True resume = False trainer = Trainer(run_root=run_root, model=model, optimizer=optimizer, criterion=criterion, train_loader=train_loader, validation_loader=validation_loader, num_epoch=num_epoch, log_int=log_int,