예제 #1
0
def get_genderize(names, outfile):
    genderize = Genderize(user_agent="Kevin_Bonham", api_key=genderize_key)

    for i in range(0, len(fixed_names), 10):
        query = fixed_names[i : i + 10]
        genders = genderize.get(query)

    names_dict = {}

    for gender in genders:
        n = gender["name"]
        g = gender["gender"]
        if g != None:
            p = gender["probability"]
            c = gender["count"]
        else:
            p = None
            c = None
        n = gender["name"]
        g = gender["gender"]

        names_dict[n] = {"gender": g, "probability": p, "count": c}

    with open(outfile, "w+") as f:
        f.write(json.dumps(names_dict, indent=4))
예제 #2
0
 def prob(self, name, binary=False):
 # guess method to check names dictionary
     if (self.config['DEFAULT']['genderize'] == 'no'):
         v = Genderize().get([name])
     elif (self.config['DEFAULT']['genderize'] == 'yes'):
         fichero = open(self.config['DEFAULT']['genderizefile'], "r+")
         apikey = fichero.readline().rstrip()
         v = Genderize(
             user_agent='GenderizeDocs/0.0',
             api_key=apikey).get([name])
     prob = v[0]['probability']
     return prob
예제 #3
0
def gender(json_dict, first_name):
    """
    Get the gender of the patient

    :param dict json_dict: full response of the vision api in dict
    :param str first_name: first_name of the patients
    :return gender in case of printed gender
    """
    male_guess_list = ['M', 'Male', 'm']
    female_guess_list = ['F', 'Female', 'f']

    gender_printed = get_gender_if_printed(json_dict)
    if gender_printed:
        if gender_printed == 'm' or gender_printed == 'male':
            return 'M'
        elif gender_printed == 'f' or gender_printed == 'female':
            return 'F'

    title_gender = get_gender_using_title(json_dict, first_name)
    if title_gender:
        return title_gender

    try:
        li = Genderize().get([first_name])[0]
        if li['gender'] == 'male':
            if check_for_gender(json_dict, male_guess_list):
                return "M"
        elif li['gender'] == 'female':
            if check_for_gender(json_dict, female_guess_list):
                return "F"
        return None

    except Exception as e:
        print("Genderize not responding {}".format(e))
        return None
예제 #4
0
def test_more_than_10_names():
    """
    Retrieve 20 names, which requires multiple HTTP requests
    now that the API has a 10-name limit.
    """
    names = [
        "Emma",
        "Olivia",
        "Ava",
        "Isabella",
        "Sophia",
        "Mia",
        "Charlotte",
        "Amelia",
        "Evelyn",
        "Abigail",
        "Liam",
        "Noah",
        "William",
        "James",
        "Logan",
        "Benjamin",
        "Mason",
        "Elijah",
        "Oliver",
        "Jacob",
    ]
    response = Genderize().get(names)
    assert len(names) == len(response)
    for name, namedata in zip(names, response):
        assert name == namedata['name'],\
            'Expected names to be returned in same order'
def genderize(genderize_api_key):
    """ Function to set up Genderize
    """

    genderize_obj = Genderize(user_agent='GenderizeCommunities/0.0', \
                            api_key=genderize_api_key)
    return genderize_obj
예제 #6
0
def __get_gender(names):
    """
        TODO: documentation
    """
    try:
        genders = Genderize().get(names, country_id="IT")
        male = 0
        male_count = 0
        female = 0
        female_count = 0
        for gender in genders:
            if gender['gender'] != None:
                if gender['gender'] == "female":
                    female_count += 1
                    female += gender['probability']
                else:
                    male_count += 1
                    male += gender['probability']
        if male > 0:
            male = male / male_count
        if female > 0:
            female = female / female_count
        if male > 0 or female > 0:
            if female > male:
                return " Donna "
            else:
                return " Uomo "
        else:
            return " PERSONA "
    except:
        print(names)
        return " PERSONARICHIESTAFALLITA "
예제 #7
0
def get_author_genders():
    app.logger.info(request.json)
    authors = tuple(request.json)

    # Fetch authors from DB
    query = "select authors.name, authors.gender, authors.gender_source from authors where authors.name IN %s"
    conn = getConnection()
    cur = conn.cursor()
    cur.execute(query, (authors, ))
    rows = cur.fetchall()
    genders = {row[0]: (row[1], row[2]) for row in rows}

    # Find missing authors
    toFetch = list(set([x for x in authors if x not in genders]))
    fetched = []
    repsonse = Genderize(api_key="a619730661a7ce6b4f8e8e6b047046a2").get(
        [x.split(" ")[0] for x in toFetch])
    for author, resp in zip(toFetch, repsonse):
        fetched.append((author, resp["gender"], "genderize"))

    # Add fetched to response
    for author, gender, source in fetched:
        genders[author] = (gender, source)

    # Add fetched to DB
    from psycopg2.extras import execute_values
    execute_values(
        cur, "INSERT INTO authors (name, gender, gender_source) VALUES %s",
        fetched)
    conn.close()
    return genders
예제 #8
0
def test_integration_single():
    """
    Retrieve a single name.
    """
    expected = 'male'
    actual = Genderize().get1('Peter')['gender']
    assert expected == actual,\
        "Expected {0}, got {1}".format(expected, actual)
예제 #9
0
def test_with_headers():
    """
    Calls the API server with an invalid API key.
    Should result in an exception.
    """
    headers = None
    result = Genderize().get('Peter', retheader=True)
    headers = result['headers']
    assert headers, "Expected response headers to be returned"
예제 #10
0
def main():

    inLines = open(INFILE, mode='r', encoding='ISO-8859-1')

    # create array of unknown gender characters
    unknown = []
    for line in inLines:
        fields = line.rsplit('\t')
        if fields[4] == '?':
            name = fields[4].split(' ')
            unknown.append(fields[1])

    # creates Genderize and gets genders
    genderize = Genderize(
        user_agent='GenderizeDocs/0.0',
        api_key=config.api_key,
        timeout=60)
    results = []
    for name in unknown:
        results.append(gender_genderizer(genderize, name))

    # sets pointer to beginning of file
    inLines.seek(0)
    outLines = open(OUTFILE, mode='w', encoding='ISO-8859-1')

    # counts
    changed = 0
    unchanged = 0
    i = 0

    for line in inLines:
        fields = line.rsplit('\t')
        name = fields[1]

        if fields[4] == '?':
            prob = results[i]['probability']
            if prob > 0.6:
                gender = results[i]['gender'][0:1]
                print('CHANGED:\t%s -> %s, %.2f' % (name, gender, prob))
                fields[4] = gender
                changed += 1
            else:
                print('UNCHANGED:\t%s' % (name))
                unchanged += 1
            i += 1

        # print updated character metadata
        newline = '\t'.join(fields)
        outLines.write(newline)

    print('----------------------------------------')
    print('TOTAL UNKNOWN:\t\t%d' % (len(unknown)))
    print('TOTAL CHANGED:\t\t%d' % (changed))
    print('TOTAL UNCHANGED:\t%d' % (unchanged))

    outLines.close()
    inLines.close()
예제 #11
0
 def guess(self, name, binary=False):
 # guess method to check names dictionary
     if (self.config['DEFAULT']['genderize'] == 'no'):
         v = Genderize().get([name])
     elif (self.config['DEFAULT']['genderize'] == 'yes'):
         fichero = open(self.config['DEFAULT']['genderizefile'], "r+")
         apikey = fichero.readline().rstrip()
         v = Genderize(
             user_agent='GenderizeDocs/0.0',
             api_key=apikey).get([name])
     g = v[0]['gender']
     if ((g == 'female') and binary):
         guess = 0
     elif ((g == 'male') and binary):
         guess = 1
     elif (not(binary)):
         guess = g
     return guess
예제 #12
0
def main():
    # Creates year folders if they don't exist; clears them if they do
    for year in range(1975, 2016):
        clear_dir('%s/%d' % (DESTFOL, year))

    genderize = Genderize(user_agent='GenderizeDocs/0.0',
                          api_key=config.api_key,
                          timeout=60)

    femCount = 0
    maleCount = 0
    unkCount = 0

    for year in range(1975, 2016):

        print('Gendering movies in %d...' % (year))

        movies = read_folder_dict('%s/%d' % (SRCFOL, year), year)

        for movie in movies:
            characters = {}
            title = movie['title']
            lines = movie['text'].split('\n')

            outFile = open('%s/%d/%s' % (DESTFOL, year, title),
                           mode='w',
                           encoding='ISO-8859-1')

            for i in range(2, len(lines)):
                fields = lines[i].split('\t')

                if len(fields) < 2:
                    continue

                name = fields.pop(0)
                gender = getGender(name, characters, genderize)
                outFile.write('%s\t%s\t%s\n' %
                              (name, gender, ' '.join(fields)))

            for gender in characters.values():
                if gender == '?':
                    unkCount += 1
                elif gender == 'f':
                    femCount += 1
                elif gender == 'm':
                    maleCount += 1

            outFile.close()
            print('Finished %s...' % (title))

        print('----------------------------------------')

    print('NUMBER OF CHARACTERS')
    print('\tMale:\t\t%d' % (maleCount))
    print('\tFemale:\t\t%d' % (femCount))
    print('\tUnknown:\t%d' % (unkCount))
예제 #13
0
def get_gender_using_genderize_api(name):
    """
    :param a string, ideally the first name
    :returns a dictionary of name, gender, % accuracy
    Description:Given a name as a string, this function returns a dic with the
    possible gender
    NOTE: This uses the genderize api
    """
    if name:
        return Genderize().get(name)
예제 #14
0
def test_invalid_api_key():
    """
    Calls the API server with an invalid API key.
    Should result in an exception.
    """
    caught = False
    try:
        Genderize(api_key='invalid_api_key').get1('Peter')
    except GenderizeException:
        caught = True
    assert caught, "Expected a GenderizeException to be thrown"
예제 #15
0
 async def gender(self, ctx, *, name: str):
     list = [f"{name}"]
     em = discord.Embed(title="Gender")
     gender = Genderize().get(list)
     result = gender[0]
     em.add_field(name="Name", value=f'{result["name"]}', inline=True)
     em.add_field(name='Gender', value=f'{result["gender"]}', inline=False)
     em.add_field(name='Probability',
                  value=f'{result["probability"]}',
                  inline=True)
     await ctx.send(embed=em)
예제 #16
0
def test_integration():
    """
    Integration test from the readme. Calls the real Genderize.io API server.
    """
    expected_genders = {
        'James': 'male',
        'Eva': 'female',
        'Thunderhorse': None,
    }
    actual_genders = dict((elem['name'], elem['gender'])
                          for elem in Genderize().get(expected_genders.keys()))
    assert expected_genders == actual_genders,\
        "Expected {0}, got {1}".format(expected_genders, actual_genders)
예제 #17
0
def gender():
    gende = []
    prenom = ""
    #On defini le prenom via une RegEx qui prend le premier mot du CV
    defPrenom = re.findall('\A[a-zA-Z{Ë, Ï, Ö, Œ, ï, ö, é,œ,â, ë, ç, ô, -}]+ ',
                           txt)
    #On supprime l'espace
    for suppEsp in defPrenom:
        prenom = suppEsp.strip()
    #on defini le sexe a partir du prenom
    sexe = Genderize().get1(prenom)
    gende.append(sexe['gender'])
    return gende
예제 #18
0
def test_with_headers():
    """
    Retrieve a single name with response headers.
    """
    response = Genderize().get(['Peter'], retheader=True)
    assert response['data'][0][
        'name'] == 'Peter', "Expected name data to be returned"
    assert response['headers'], "Expected response headers to be returned"
    for header in [
            'X-Rate-Limit-Limit', 'X-Rate-Limit-Remaining', 'X-Rate-Reset'
    ]:
        assert header in response['headers'],\
            "Expected {0} header to be returned".format(header)
예제 #19
0
    def guess_list(self, path='files/names/partial.csv', binary=False):
    # guess list method
        slist = []
        with open(path) as csvfile:
            sexreader = csv.reader(csvfile, delimiter=',', quotechar='|')
            next(sexreader, None)
            i = 0
#            string = ""
            listnames = list()
            for row in sexreader:
                name = row[0].title()
                name = name.replace('\"','')
                listnames.append(name)
#        print("len listnames:"+str(len(listnames)))
        new = []
        for i in range(0, len(listnames), 10): # We must split the list in different lists with size 10
            new.append(listnames[i : i+10])
        for i in new:
            if (self.config['DEFAULT']['genderize'] == 'no'):
                jsonlist = Genderize().get(i)
            elif (self.config['DEFAULT']['genderize'] == 'yes'):
                fichero = open("files/apikeys/genderizepass.txt", "r+")
                apikey = fichero.readline().rstrip()
                jsonlist = Genderize(user_agent='GenderizeDocs/0.0', api_key=apikey).get(i)
            for item in jsonlist:
                if ((item['gender'] == None) & binary):
                    slist.append(2)
                elif ((item['gender'] == None) & (not binary)):
                    slist.append("unknown")
                elif ((item['gender'] == "male") & binary):
                    slist.append(1)
                elif ((item['gender'] == "male") & (not binary) ):
                    slist.append("male")
                elif ((item['gender'] == "female") & binary):
                    slist.append(0)
                elif ((item['gender'] == "female") & (not binary) ):
                    slist.append("female")
        return slist
예제 #20
0
    def __init__(self, data, key=None, gender_file=None):
        """ Main constructor of the class where the original dataframe
        is provided.

        :param data: original dataframe
        :param key: genderize key (optional)
        :param gender_file: file with gender info, used as cache
        :type data: pandas.DataFrame
        :type key: string
        :type gender_file: string (as filepath)
        """

        from genderize import Genderize

        self.data = data
        self.gender = {}  # init the name-gender dictionary
        self.key = key
        self.gender_file = gender_file

        # Init the genderize connection
        self.connection = Genderize()
        if self.key:
            self.connection = Genderize(api_key=self.key)

        if self.gender_file:
            # This file is used as cache for the gender info
            # This helps to avoid calling once and again to the API
            fd = open(gender_file, "r")
            lines = fd.readlines()
            fd.close()
            # TODO: fix hardcoded code when reading columns and using
            #      separators
            for line in lines:
                gender_data = line.split("\t")
                self.gender[gender_data[1]] = {
                    "gender_analyzed_name": gender_data[1],
                    "gender": gender_data[2]
                }
def get_gender_from_given_name(ungendered_imdbs):
    names = {}
    for imdb in ungendered_imdbs:
        if imdb[0] not in names.keys():
            names[imdb[0]] = {}
            names[imdb[0]]['imdbs'] = []
        names[imdb[0]]['imdbs'].append(imdb[1])

    #print(names)

    #trying to get gender from name file
    try:
        with open('names_to_gender.csv', 'r', encoding="utf-8") as file:
            for line in file:
                info = line.split(',')
                if info[0] in names:
                    #print(info[0]+"("+info[1]+") is given name of "+str(names[info[0]]['imdbs']))
                    for imdb in names[info[0]]['imdbs']:
                        #print(imdb)
                        crew[imdb]['gender'] = info[1]
                        crew[imdb]['gender_probability'] = info[2]
                        crew[imdb]['source'] = 'Genderize.io'
                    del names[info[0]]
    except:
        print('names_to_gender file not found. No problem. Proceeding.')

    names_list = list(names.keys())

    start = 0
    stop = 9
    namesfile = open("names_to_gender.csv", 'a', encoding="utf-8")
    while (start < len(names_list)):

        #print("Getting gender of names "+str(names_list[start:stop+1]))
        gendered_names = Genderize().get(names_list[start:stop + 1])
        for name in gendered_names:
            #print(name['name'])
            namesfile.write(
                str(name['name']) + ',' + str(name['gender']) + ',' +
                str(name['probability']) + ',' + str(name['count']) + '\n')
            for imdb in names[name['name']]['imdbs']:
                #print(imdb)
                crew[imdb]['gender'] = name['gender']
                crew[imdb]['gender_probability'] = name['probability']
                crew[imdb]['source'] = 'Genderize.io'
        start = start + 10
        stop = min(stop + 10, len(names) + 1)
        time.sleep(5)
    namesfile.close()
def find_gender():
    f = open('kiev_users.txt', 'r')
    users = pickle.load(f)
    for user in users:
        gender = None
        user.full_name = translit(user.full_name, 'ru', reversed=True)
        result = Genderize().get(user.full_name.split())
        for item in result:
            # print user.full_name, item['gender']
            # print item['gender']
            # if 'probability' in item:
            #     print item['probability']
            if item['gender'] == 'female' or item['gender'] == 'male':
                gender = item['gender']
        print user.full_name, gender
예제 #23
0
class GenderizeIO(object):
    __name__ = 'genderizeio'

    def __init__(self, api_key=None):
        self._api = Genderize(api_key=api_key)

    def gender(self, artist):
        first_name = artist.split(' ')[0]
        response = self._api.get([first_name])
        if response[0]['gender'] is not None \
            and response[0]['probability'] > 0.75 \
            and response[0]['count'] > 50:
            return response[0]['gender']
        else:
            return None
예제 #24
0
파일: enrich.py 프로젝트: dicortazar/ceres
    def __init__(self, data, key=None, gender_file=None):
        """ Main constructor of the class where the original dataframe
        is provided.

        :param data: original dataframe
        :param key: genderize key (optional)
        :param gender_file: file with gender info, used as cache
        :type data: pandas.DataFrame
        :type key: string
        :type gender_file: string (as filepath)
        """

        from genderize import Genderize

        self.data = data
        self.gender = {}  # init the name-gender dictionary
        self.key = key
        self.gender_file = gender_file

        # Init the genderize connection
        self.connection = Genderize()
        if self.key:
            self.connection = Genderize(api_key=self.key)

        if self.gender_file:
            # This file is used as cache for the gender info
            # This helps to avoid calling once and again to the API
            fd = open(gender_file, "r")
            lines = fd.readlines()
            fd.close()
            # TODO: fix hardcoded code when reading columns and using
            #      separators
            for line in lines:
                gender_data = line.split("\t")
                self.gender[gender_data[1]] = {"gender_analyzed_name": gender_data[1],
                                               "gender": gender_data[2]}
예제 #25
0
def dumpintoexcel(fullname, salutation, designation, namelist, sociallinks,
                  countries, imagelinks, last_updated):
    try:
        from genderize import Genderize
        x = Genderize().get([namelist.first])
        for y in x:
            if y['gender'] != None or y['gender'] != '':
                Gender = y['gender']
            else:
                Gender = 'Unknown'
    except:
        Gender = 'Unknown'

    links = ','.join([str(elem) for elem in sociallinks])
    images = ','.join([str(elem) for elem in imagelinks])
    if namelist:
        first_name = namelist.first
        middle_name = namelist.middle
        last_name = namelist.last
    else:
        first_name = ""
        middle_name = ""
        last_name = ""

    infotext = [{
        'Country': countries[0],
        'Full Name': fullname,
        'First Name': first_name,
        'Middle Name': middle_name,
        'Last Name': last_name,
        'Gender': Gender,
        'Title': salutation,
        'Designation': designation,
        'Contact': links,
        'Images': images,
        'Last Updated': last_updated,
    }]
    keys = [
        'Country', 'Full Name', 'First Name', 'Middle Name', 'Last Name',
        'Gender', 'Title', 'Designation', 'Contact', 'Images', 'Last Updated'
    ]

    with open('ScrappedData/PoliticalLeaders.csv', 'a') as dept:
        writer = csv.DictWriter(dept, fieldnames=keys)
        writer.writerows(infotext)
예제 #26
0
def genderize_function(name):
	#lowercase
	name = name.lower()
	regex = re.compile('[^a-z ]')
	#removal of all non-letters	
	name = regex.sub('', name)
	#names = name.split()
	names = name.split()
	print names

	try:
		for x in names:
			gen = Genderize(api_key=GENDERIZE_API_KEY).get([x])
			print gen
			if gen[0]['gender'] != None:
				return (gen[0]['gender'],gen[0]['count'],gen[0]['probability'])
		return ('unknown','unknown','unknown')
	except genderize.GenderizeException:
		pass
예제 #27
0
def get_author_gender():
    name = request.args.get('name')
    conn = getConnection()
    cur = conn.cursor()
    query = "select authors.gender, authors.gender_source from authors where authors.name = %s"
    cur.execute(query, (name, ))
    rows = cur.fetchall()
    if not rows:
        gender = Genderize(api_key="a619730661a7ce6b4f8e8e6b047046a2").get(
            [name.split(" ")[0]])[0]["gender"]
        source = "genderize"
        insert = "insert into authors (name, gender, gender_source) values (%s, %s, %s)"
        cur.execute(insert, (name, gender, source))
    else:
        gender = rows[0][0]
        source = rows[0][1]
    print(query, rows)
    conn.close()
    return {"name": name, "gender": gender, "source": source}
예제 #28
0
    def get_gender(df, column):

        name_list = []
        genderdict_list = []
        gender_list = []

        for name in df[column]:
            name_list.append(name)

        name_list = [name_list[i:i + 10] for i in range(0, len(name_list), 10)]

        for element in name_list:
            genderdict_list.append(Genderize().get(element))

        for gender in genderdict_list:
            for key in gender:
                gender_list.append(key['gender'])

        return gender_list
예제 #29
0
파일: data.py 프로젝트: titigmr/APHP_INRIA
def get_gender(unique_name):
    """
    Request genderize api to get the gender for each name in a list.
    If maximum number of requests is reached, return the last data stored.
    """
    try:
        get_gender = Genderize().get(unique_name)
        fp = os.path.join('extern_data', 'gender.json')
        f = open(fp, "w")
        json.dump(get_gender, f)
        f.close()
        return get_gender

    except GenderizeException:
        print("Request limit")
        fp = os.path.join('extern_data', 'gender.json')
        if os.path.exists(fp):
            with open(fp) as data_file:
                data_loaded = json.load(data_file)
            return data_loaded
def call_genderizeio(auth_df):
    unk_df = auth_df[(auth_df['clean_gender'] == 'unknown')
                     & (auth_df['forename'] != 'NAN') &
                     (auth_df['forename'].str.len() > 2)]
    print('There are ' + str(len(unk_df)) +
          ' names we dont know about before calling genderize...')
    unk_df = pd.DataFrame(unk_df['forename'].drop_duplicates())
    r = requests.get("https://api.genderize.io?name=test")
    print(r.headers['X-Rate-Limit-Remaining'] +
          ' genderize calls remaining...!')
    if int(r.headers['X-Rate-Limit-Remaining']) >= len(unk_df):
        genderize_return = (Genderize().get(unk_df['forename'].to_list()))
        unk_df['genderize_return'] = ''
        counter = 0
        for index, row in unk_df.iterrows():
            unk_df.at[index,
                      'genderize_return'] = genderize_return[counter]['gender']
            counter = counter + 1
        #call_genderizeio()
        unk_df.to_csv('unknown_names.csv')
        unk_df = unk_df[(unk_df['genderize_return'] == 'male') |
                        (unk_df['genderize_return'] == 'female')]
        auth_df = pd.merge(auth_df,
                           unk_df,
                           how='left',
                           left_on='forename',
                           right_on='forename')
        auth_df['clean_gender'] = np.where(
            auth_df['genderize_return'] == 'male', auth_df['genderize_return'],
            auth_df['clean_gender'])
        auth_df['clean_gender'] = np.where(
            auth_df['genderize_return'] == 'female',
            auth_df['genderize_return'], auth_df['clean_gender'])
    unk_df = auth_df[(auth_df['clean_gender'] == 'unknown')
                     & (auth_df['forename'] != 'NAN') &
                     (auth_df['forename'].str.len() > 2)]
    print('After calling the genderize API, there are still ' +
          str(len(unk_df)) + ' names which we dont know about!...')
    return auth_df
예제 #31
0
def trouver_sexe_prof(prenom):
    sexe = Genderize().get([prenom])
    for sex in sexe:
        gender = list(sex.values())[1]
        #print(gender)
        if gender is not None:
            probability = list(sex.values())[2]
        #print(probability)
        if gender == None:
            return "impossible à déterminer"
        else:
            if gender == "female":
                try:
                    if probability >= 0.75:
                        return "femme"
                except IndexError:
                    return "impossible à déterminer"
            elif gender == "male":
                try:
                    if probability >= 0.75:
                        return "homme"
                except IndexError:
                    return "impossible à déterminer"
예제 #32
0
def get_genderize(api_key):
    """ Returns genderize object, useful when using this script as a module
    """
    genderize = Genderize(user_agent='GenderizeDocs/0.0', api_key=api_key)
    return genderize
예제 #33
0
파일: enrich.py 프로젝트: dicortazar/ceres
class Gender(Enrich):
    """ This class creates three new columns with the gender of
    the name provided
    """

    def __init__(self, data, key=None, gender_file=None):
        """ Main constructor of the class where the original dataframe
        is provided.

        :param data: original dataframe
        :param key: genderize key (optional)
        :param gender_file: file with gender info, used as cache
        :type data: pandas.DataFrame
        :type key: string
        :type gender_file: string (as filepath)
        """

        from genderize import Genderize

        self.data = data
        self.gender = {}  # init the name-gender dictionary
        self.key = key
        self.gender_file = gender_file

        # Init the genderize connection
        self.connection = Genderize()
        if self.key:
            self.connection = Genderize(api_key=self.key)

        if self.gender_file:
            # This file is used as cache for the gender info
            # This helps to avoid calling once and again to the API
            fd = open(gender_file, "r")
            lines = fd.readlines()
            fd.close()
            # TODO: fix hardcoded code when reading columns and using
            #      separators
            for line in lines:
                gender_data = line.split("\t")
                self.gender[gender_data[1]] = {"gender_analyzed_name": gender_data[1],
                                               "gender": gender_data[2]}

    def enrich(self, column):
        """ This method calculates thanks to the genderize.io API the gender
        of a given name.

        This method initially assumes that for the given
        string, only the first word is the one containing the name
        eg: Daniel Izquierdo <*****@*****.**>, Daniel would be the name.

        If the same class instance is used in later gender searches, this stores
        in memory a list of names and associated gender and probability. This is
        intended to have faster identifications of the gender and less number of
        API accesses.

        :param column: column where the name is found
        :type column: string

        :return: original dataframe with four new columns:
         * gender: male, female or unknown
         * gender_probability: value between 0 and 1
         * gender_count: number of names found in the Genderized DB
         * gender_analyzed_name: name that was sent to the API for analysis
        :rtype: pandas.DataFrame
        """

        if column not in self.data.columns:
            return self.data

        splits = self.data[column].str.split(" ")
        splits = splits.str[0]
        self.data["gender_analyzed_name"] = splits.fillna("noname")
        self.data["gender_probability"] = 0
        self.data["gender"] = "Unknown"
        self.data["gender_count"] = 0

        names = list(self.data["gender_analyzed_name"].unique())

        for name in names:
            if name in self.gender.keys():
                gender_result = self.gender[name]
            else:
                try:
                    # TODO: some errors found due to encode utf-8 issues.
                    # Adding a try-except in the meantime.
                    gender_result = self.connection.get([name])[0]
                except Exception:
                    continue

                # Store info in the list of users
                self.gender[name] = gender_result

            # Update current dataset
            if gender_result["gender"] is None:
                gender_result["gender"] = "NotKnown"
            self.data.loc[self.data["gender_analyzed_name"] == name, 'gender'] =\
                gender_result["gender"]
            if "probability" in gender_result.keys():
                self.data.loc[self.data["gender_analyzed_name"] == name,
                              'gender_probability'] = gender_result["probability"]
                self.data.loc[self.data["gender_analyzed_name"] == name,
                              'gender_count'] = gender_result["count"]

        self.data.fillna("noname")
        return self.data