def load(): gt = [(65, 141), (157, 187), (260, 304), (324, 326), (380, 393), (455, 470), (475, 485), (505, 555), (666, 807), (814, 888), (903, 929)] a = [ (66, 73), (78, 126), (135, 147), (175, 186), (225, 236), (274, 318), (349, 354), (366, 372), (423, 436), (453, 460), (467, 473), (487, 493), (501, 506), (515, 525), (531, 542), (545, 563), (576, 580), (607, 611), (641, 646), (665, 673), (678, 898), (907, 933) ] b = [(63, 136), (166, 188), (257, 310), (451, 473), (519, 546), (663, 916)] dataset = Data('test') dataset.activities = ['null', 'Act'] dataset.activities_map = {0: 'null', 1: 'Act'} dataset.activities_map_inverse = {'null': 0, 'Act': 1} dataset.activity_events = pd.DataFrame( columns=["StartTime", "EndTime", "Activity", 'Duration']) init = pd.to_datetime('1/1/2020') for k in gt: actevent = { "StartTime": init + pd.to_timedelta(str(k[0]) + 's'), "EndTime": init + pd.to_timedelta(str(k[1]) + 's'), "Activity": 1, 'Duration': pd.to_timedelta(str(k[1] - k[0]) + 's') } dataset.activity_events = dataset.activity_events.append( actevent, ignore_index=True) aevents = pd.DataFrame( columns=["StartTime", "EndTime", "Activity", 'Duration']) for k in a: actevent = { "StartTime": init + pd.to_timedelta(str(k[0]) + 's'), "EndTime": init + pd.to_timedelta(str(k[1]) + 's'), "Activity": 1, 'Duration': pd.to_timedelta(str(k[1] - k[0]) + 's') } aevents = aevents.append(actevent, ignore_index=True) bevents = pd.DataFrame( columns=["StartTime", "EndTime", "Activity", 'Duration']) for k in b: actevent = { "StartTime": init + pd.to_timedelta(str(k[0]) + 's'), "EndTime": init + pd.to_timedelta(str(k[1]) + 's'), "Activity": 1, 'Duration': pd.to_timedelta(str(k[1] - k[0]) + 's') } bevents = bevents.append(actevent, ignore_index=True) return dataset, aevents, bevents
def create(real, pred, filename): evalres = [{}] evalres[0]['test'] = Data('test res') evalres[0]['test'].real_events = vs.convert2event(real) evalres[0]['test'].pred_events = vs.convert2event(pred) evalres[0]['test'].quality = {} dataset = Data('MyDataset') dataset.activities = ['None', 'Act'] dataset.activity_events = evalres[0]['test'].real_events dataset.activities_map_inverse = { k: v for v, k in enumerate(dataset.activities) } dataset.activities_map = {v: k for v, k in enumerate(dataset.activities)} dataset.sensor_events = pd.DataFrame() runinfo = filename utils.saveState([runinfo, dataset, evalres], filename)